Involvement of Excitatory Amino Acid Receptors in the Mechanisms Underlying Excitotoxic Phenomena

  • A. C. Foster
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 203)


Acidic amino acids are thought to be the major class of excitatory neurotransmitters within the mammalian central nervous system (CNS; Watkins and Evans, 1981; Fagg and Foster, 1983; Fonnum, 1984). Due to their abundance, L-glutamate and L-aspartate are the endogenous excitatory amino acids which have received most attention, although a number of sulphur-containing analogs present in smaller quantities must also be considered as transmitter candidates (Watkins and Evans, 1981; Iwata et al., 1982; see chapter by Cuénod).


Excitatory Amino Acid Kainic Acid Quinolinic Acid Acidic Amino Acid Kynurenic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bainbridge, K.G., and Miller, J.J., 1982, Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat, Brain Res., 245: 223.CrossRefGoogle Scholar
  2. Ben-Ari, Y., 1985, Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy, Neuroscience, 14: 375.PubMedCrossRefGoogle Scholar
  3. Berger, M., Sperk, G., and Hornykiewicz, O., 1982, Serotonergic denervation partially protects rat striatum from kainic acid toxicity, Nature, 299: 254.PubMedCrossRefGoogle Scholar
  4. Biziere, K., and Coyle, J.T., 1978, Influence of cortico-striatal afferents on striatal kainic acid neurotoxicity, Neurosci. Lett., 8: 303.Google Scholar
  5. Campochiaro, P., and Coyle, J.T., 1978, Ontogenetic development of kainate neurotoxicity: corrrelates with glutamatergic innervation, Proc. Natl. Acad. Sci. USA, 75: 2025.Google Scholar
  6. Coan, E.J., and Collingridge, G.L., 1985, Magnesium ions block an N-methylD-aspartate receptor-mediated component of synaptic transmission in rat hippocampus, Neurosci. Lett., 53: 21.Google Scholar
  7. Collingridge, G.L., Kehl, S.J., and McLennan, H., 1983, The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurons in vitro, J. Phvsiol., 334: 19.Google Scholar
  8. Coppini, D., 1975, Development of analytical methods for the detection and determination of kynurenic and xanthurenic acids, Acta Vitaminol. Enzvmol., 29: 35.Google Scholar
  9. Coyle, J.T., Bird, S.J., Evans, R.H., Gulley, R.L., Nadler, J.V., Nicklas, W.J., and Olney, J.W., Excitatory amino acid neurotoxins: selectivity, specificity and mechanism of action, Neurosci. Res. Prog. Bull., 19: 331.Google Scholar
  10. Coyle, J.T., 1983, Neurotoxic action of kainic acid, J. Neurochem., 41: 1.PubMedCrossRefGoogle Scholar
  11. Croucher, M.J., Collins, J.F., and Meldrum, B.S., 1982, Anticonvulsant action of excitatory amino acid antagonists, Science, 216: 899.PubMedCrossRefGoogle Scholar
  12. Croucher, M.J., Meldrum, B.S., Jones, A.W., and Watkins, J.C., 1984, y-D-glutamylaminomethylsulphonic acid (GAMS), a kainate and quisqualate antagonist, prevents sound-induced seizures in DBA/2 mice, Brain Res., 322: 111.Google Scholar
  13. deMontigny, C., and Lund, J.P., 1980, A microiontophorectic study of the action of kainic acid and putative neurotransmitters in the rat mesencephalic trigeminal nucleus, Neuroscience, 5: 1621.CrossRefGoogle Scholar
  14. Dingledine, R., 1983, N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells, J. Phvsiol., 343: 385.Google Scholar
  15. Dodd, P.R., Bradford, H.F., Abdul-Ghani, A.S., Cox, D.W.G., and ContinhoNetto, J., 1980, Release of amino acids from chronic epileptic and sub-epileptic foci in vivo, Brain Res., 193: 505.PubMedCrossRefGoogle Scholar
  16. Duce, I.R., Donaldson, P.L., and Usherwood, P.N.R., 1983, Investigations into the mechanism of excitant amino acid cytotoxicity using a well-characterized glutamatergic system, Brain Res., 263: 77.PubMedCrossRefGoogle Scholar
  17. Fagg, G.E., and Foster, A.C., 1983, Amino acid neurotransmitters and their pathways in the mammalian central nervous system, Neuroscience, 9: 701.PubMedCrossRefGoogle Scholar
  18. Fagg, G.E., and Matus, A., 1984, Selective association of N-methyl-aspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities, Proc. Natl. Acad. Sci. USA, 81: 6876.Google Scholar
  19. Farber, J.L., 1981, The role of calcium in cell death, Life Sci., 29: 1289.PubMedCrossRefGoogle Scholar
  20. Ferkany, J.W., Zaczek, R., and Coyle, J.T., 1982, Kainic acid stimulates amino acid release at presynaptic receptors, Nature, 298:757. Fonnum,F., 1984, Glutamate: a neurotransmitter in mammalian brain, J.Neurochem., 42: 1.Google Scholar
  21. Foster, A.C., Mena, E.E., Monaghan, D.T., and Cotman, C.W., 1981, Synaptic localisation of kainic acid binding sites, Nature, 289: 73.PubMedCrossRefGoogle Scholar
  22. Foster, A.C., Collins, J.F., and Schwarcz, R., 1983,. On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids and structurally related compounds, Neurooharmacology, 22: 1331.Google Scholar
  23. Foster, A.C., and Fagg, G.E., 1984, Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors, Brain Res. Rev., 7: 103.Google Scholar
  24. Foster, A.C., and Schwarcz, R., 1984, Synthesis of quinolinic acid by 3-hydroxyanthranilic acid oxygeriase in rat brain tissue, Soc. Neurosci., Abstr., 10:11.4.Google Scholar
  25. Foster, A.C., Miller, L.P., Oldendorf, W.H., and Schwarcz, R., 1984a, Studies on the disposition of quinolinic acid after intracerebral or systemic administration in the rat, Exp. Neurol., 84: 428.Google Scholar
  26. Foster, A.C., Vezzani, A., French, E.D., and Schwarcz, R., 1984b, Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid, Neurosci. Lett., 48: 273.Google Scholar
  27. Foster, A.C., Zinkand, W.C., and Schwarcz, R., 1985, Quinolinic acid phosphoribosyltransferase in rat brain, J. Neurochem„ 44:446.Google Scholar
  28. Fuxe, K., Roberts, P.J., and Schwarcz, R., 1983, Excitotoxins, Macmillan Press, London.Google Scholar
  29. Ganong, A.H., Lanthorn, T.H., and Cotman, C.W., 1983, Kynurenic acid inhibits synaptic and acidic amino acid-induced responses in the rat hippocampus and spinal cord, Brain Res., 273: 170.PubMedCrossRefGoogle Scholar
  30. Greenamyre, J.T., Olson, J.M.M., Penney, J.B., Jr., and Young, A.B., 1985, Autoradiographic characterization of N-methyl-D-aspartate-, quisqualateand kainate-sensitive glutamate binding sites, J. Pharmacol. Exp. Therap., 233: 254.Google Scholar
  31. Griffiths, T., Evans, M.C., and Meldrum, B.S., 1984, Status epilepticus: the reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus, Neuroscience, 12: 557.PubMedCrossRefGoogle Scholar
  32. Harris, E.W., Ganong, A.H., and Cotman, C.W., 1984, Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors, Brain Res., 323: 132.PubMedCrossRefGoogle Scholar
  33. Herrling, P.L., Morris, R., and Salt, T.E., 1983, Effects of excitatory amino acids and their antagonists on membrane and action potentials of cat caudate neurons, J, Physiol., 339: 207.Google Scholar
  34. Herrling, P.L., 1985, Pharmacology of the cortico-caudate excitatory post-synaptic potential in the cat: evidence for its mediation by quisqualateor kainate-receptors, Neuroscience, 14:417.Google Scholar
  35. Hicks, T.P., Hall, J.G., and McLennan, H., 1978, Ranking of excitatory amino acids by the antagonists glutamate diethyl ester and D-a-aminoadipic acid, Canad. J. Physiol. Pharmacol., 56: 901.Google Scholar
  36. Honore, T., Lauridsen, J., and Krogsgaard-Larsen, P., 1982, The binding of (3H]AMPA, a structural analogue of glutamic acid, to rat brain membrane, J. Neurochem., 36: 173.CrossRefGoogle Scholar
  37. Hynes, M.A., and Dingledine, R., 1984, Attenuation of epileptiform burst firing in the rat hippocampal slice by antagonists of N-methyl-D-aspartate receptors, Soc. Neurosci. Abstr., 10: 68. 6.Google Scholar
  38. Iwata, H., Yamagami, S., Mizio, H., and Baba, A., 1982, Cysteine sulphinic acid in the central nervous system: uptake and release of cysteine sulphinic acid by a rat brain preparation, J. Neurochem., 38: 1268.PubMedCrossRefGoogle Scholar
  39. Johnston, G.A.R., Kennedy, S.M.E., and Twitchin, B., 1979, Action of the neurotoxin kainic acid on high affinity uptake of L-glutamic acid in rat brain slices, J. Neurochem., 32: 121.PubMedCrossRefGoogle Scholar
  40. Köhler, C., Schwarcz, R., and Fuxe, K., 1979, Hippocampal lesions indicate differences between the excitotoxic properties of acidic amino acids, Brain Res., 175: 366.PubMedCrossRefGoogle Scholar
  41. Köhler, C., and Schwarcz, R., 1983, Comparison of ibotenate and kainite neurotoxicity in rat brain: a histological study, Neuroscience, 8: 819.PubMedCrossRefGoogle Scholar
  42. Lehmann, J., and Scatton, B., 1982, Characterization of the excitatory amino acid receptor-mediated release of [3H]-acetylcholine from rat striatal slice, Brain Res., 252: 77.PubMedCrossRefGoogle Scholar
  43. Luini, A., Goldberg, O., and Teichberg, V.I., 1981, Distinct pharmacological properties of excitatory amino acid receptors in the striatum: study by Na+ efflux assay, Proc. Natl. Acad. Sci. USA, 78: 3250.Google Scholar
  44. McGeer, E.G., McGeer, P.L., and Singh, K , 1978, Kainate-induced degeneration of neostriatal neurons: dependence upon corticostriatal tract, Brain Res., 139: 381.Google Scholar
  45. McLennan, H., and Lodge, D., 1979, The antagonism of amino acid-induced excitation of spinal neurons in the cat, Brain Res., 169: 83.PubMedCrossRefGoogle Scholar
  46. McLennan, H., 1980, The effect of decortication on excitatory amino acid sensitivity of striatal neurons, Neurosci. Lett., 18: 313.Google Scholar
  47. Meldrum, B.S., Croucher, M.J., Badman, G., and Collins, J.F., 1983, Anti-epileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio, Neurosci. Lett., 39: 101.Google Scholar
  48. Monaghan, D.T., and Cotman, C.W., 1982, The distribution of [3H]-kainic acid binding sites in the rat CNS as determined by autoradiography, Brain Res., 252: 91.PubMedCrossRefGoogle Scholar
  49. Monaghan, D.T., Holets, V.R., Toy, D.W., and Cotman, C.W., 1983, Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites, Nature, 306: 176.PubMedCrossRefGoogle Scholar
  50. Monaghan, D.T., Yao, D., and Cotman, C.W., 1985, L-[3H]-glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: an autoradiographic analysis, Brain Res., 340: 378.PubMedCrossRefGoogle Scholar
  51. Moroni, F., Lombardi, G., Moneti, G., and Aldinio, C., 1984, The excitotoxin quinolinic acid is present in the brain of several animal species and its cortical content increases during the aging process, Neurosci. Lett., 47: 51.Google Scholar
  52. Nadler, J.V., Perry, B.W., and Cotman, C.W., 1978, Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells, Nature, 271: 676.PubMedCrossRefGoogle Scholar
  53. Nadler, J.V., Evenson, D.A., and Cuthbertson, G.J., 1981a, Comparative toxicity of kainic acid and other acidic amino acids towards rat hippocampal neurons, Neuroscience, 6: 2505.PubMedCrossRefGoogle Scholar
  54. Nadler, J.V., Evenson, D.A., and Smith, E.M., 1981b, Evidence from lesion studies for epileptogenic and non-epileptogenic neurotoxic interactions between kainic acid and excitatory innervation, Brain Res., 205: 405.PubMedCrossRefGoogle Scholar
  55. Nishizuka, Y., and Hayaishi, 0., 1963, Studies on the biosynthesis of nicotinamide adenine dinucleotide. I. Enzymatic synthesis of niacin ribonucleotides from 3-hydroxyanthranilic acid in mammalian tissues, J. Biol. Chem., 238: 3369.Google Scholar
  56. Nowak, L., Bregestovski, P., Ascher, P., Herbert, A., and Prochiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurons, Nature, 307: 462.PubMedCrossRefGoogle Scholar
  57. Olney, J.W., Ho, O.L., and Rhee, V., 1971, Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system, Exp. Brain Res., 14: 61.Google Scholar
  58. Olney, J.W., deGubareff, T., and LaBruyere, J., 1979, a-Aminoadipate blocks the neurotoxic action of N-methylaspartate, Life Sci., 25: 537.Google Scholar
  59. Olney, J.W., 1980, Excitotoxic mechanisms of neurotoxicity, in: Experimental and Clinical Neurotoxiçologv, P.S. Spencer and H.H. Schaumburg, eds., Williams and Wilkins, Baltimore, p. 272.Google Scholar
  60. Olney, J.W., Price, M.T., Sanson, L., and LaBruyere, J., 1984, The ionic basis of excitotoxin-induced neuronal necrosis, Soc. Neurosci. Abstr., 10: 11. 8.Google Scholar
  61. Perkins, M.N, and Stone, T.W., 1982, An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid, Brain Res., 247: 184.PubMedCrossRefGoogle Scholar
  62. Perkins, M.N., and Stone, T.W., 1983, Quinolinic acid: regional variations in neuronal sensitivity, Brain Res., 259: 172.PubMedCrossRefGoogle Scholar
  63. Pumain, R., and Heinemann, U., 1985, Stimulus- and amino acid-induced calcium and potassium changes in rat neocortex, J. Neurophvsiol., 53:1. Rothman, S.M., 1984, Excitatory amino acid neurotoxicity is produced by passive chloride influx, Soc. Neurosci. Abstr., 10: 11. 7.Google Scholar
  64. Schwarcz, R., Scholz, D., and Coyle, J.T., 1978, Structure-activity relations for the neurotoxicity of kainic acid derivatives and glutamate analogues, Neuropharmacology, 17: 145PubMedCrossRefGoogle Scholar
  65. Schwarcz, R., and Köhler, C., 1980, Evidence against an exclusive role of glutamate in kainic acid neurotoxicity, Neurosci. Lett., 19: 243.Google Scholar
  66. Schwarcz, R., Collins, J.F., and Parks, D.A., 1982, a-Amino-w-phosphonocarboxylates block ibotenate but not kainate neurotoxicity in rat hippocampus, Neurosci. Lett., 33: 85.Google Scholar
  67. Schwarcz, R., and Köhler, C., 1983, Differential vulnerability of central neurons of the rat to quinolinic acid, Neurosci. Lett., 38: 85.Google Scholar
  68. Schwarcz, R., Whetsell, W.O. Jr., and Foster, A.C., 1983a, The neurodegen-Google Scholar
  69. erative properties of intracerebral quinolinic acid and its structural analogue cis-2,3-piperidine dicarboxylic acid, in: Excitotoxins, K.Fuxe, P. Roberts and R. Schwarcz, eds., Macmillan Press, London, p. 122.Google Scholar
  70. Schwarcz, R., Whetsell, W.O. Jr., and Mangano, R.M., 1983b, Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain, Science, 219: 316.PubMedCrossRefGoogle Scholar
  71. Schwarcz, R., Brush, G.S., Foster, A.C., and French, E.D., 1984a, Seizure activity and lesions after intrahippocampal quinolinic acid injection, Exp. Neurol., 84: 1.Google Scholar
  72. Schwarcz, R., Foster, A.C., French, E.D., Whetsell, W.O. Jr., and Köhler, C., 1984b, Excitotoxic models for neurodegenerative disorders, Life Sci., 35: 19.PubMedCrossRefGoogle Scholar
  73. Slevin, J.T., Collins, J.F., and Coyle, J.T., 1983, Analogue interactions with the brain receptor labeled by [3Hlkainic acid, Brain Res., 265: 169.PubMedCrossRefGoogle Scholar
  74. Sloviter, R.S., and Dempster, D.W., 1985, ‘Epileptic’ brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine, Brain Res. Bull., 15: 39.Google Scholar
  75. Steiner, H.R., McBean, G.J., Köhler, C., Roberts, P.J., and Schwarcz, R., 1984, Ibotenate-induced neuronal degeneration in immature rat brain, Brain Res., 307: 117.PubMedCrossRefGoogle Scholar
  76. Stone, T.W., and Perkins, M.N., 1981, Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS, Eur. J. Pharmacol., 72: 411.Google Scholar
  77. Vezzani, A., Ungerstedt, V., French, E.D., and Schwarcz, R., 1985, In vivo brain dialysis of amino acids and simultaneous EEG measurements following intrahippocampal quinolinic acid injection: evidence for a dissociation between neurochemical changes and seizures, J. Neurochem., 45: 335.PubMedCrossRefGoogle Scholar
  78. Watkins, J.C., and Evans, R.H., 1981, Excitatory amino acid transmitters, Ann. Rev. Pharmacol. Toxicol., 21: 165.Google Scholar
  79. Whetsell, W.O. Jr., Ecob-Johnston, M.S., and Nickles, W.J., 1979, Studies of kainate-induced caudate lesions in organotypic tissue culture, in: Advances in Neurology, Vol. 23, Huntington’s Disease, Raven Press, New York, p. 645.Google Scholar
  80. Wolfensberger, M., Amsler, U., Cuénod, M., Foster, A.C., Whetsell, W.O. Jr., and Schwarcz, R., 1983, Identification of quinolinic acid in rat and human brain tissue, Neurosci, Lett., 41: 247.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. C. Foster
    • 1
  1. 1.Neuroscience Research CentreMerck, Sharp and Dohme Ltd.Harlow, EssexUK

Personalised recommendations