Advertisement

Excitatory Amino Acid Pathways in the Brain

  • O. P. Ottersen
  • J. Storm-Mathisen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 203)

Abstract

The neurochemical techniques used to obtain the results reviewed here take advantage of the fact that chemical neurotransmission requires 1) the presence of the transmitter in the presynaptic element, 2) a synthesizing apparatus for transmitter replenishment, 3) a mechanism for transmitter release, and 4) a mechanism for terminating transmitter action, involving, in the case of excitatory amino acids (EAA), reuptake in the presynaptic element. These techniques alone do not give definitive proof of the transmitter identity, but positive results with any one of them in a neuronal system suggest that the possibility of EAA neurotransmission should be more closely investigated, including also electrophysiological and pharmacological methods.

Keywords

Superior Colliculus Excitatory Amino Acid Cochlear Nucleus Perforant Path Olfactory Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarca, J., and Bustos, G., 1985, Release of D-[3Hlaspartic acid fromGoogle Scholar
  2. the rat substantia nigra: effect of veratridine-evoked depolarization and cortical ablation, Neurochem. Int., 7:229.Google Scholar
  3. Adams, J.C., and Wenthold, R.J., 1979, Distribution of putative aminoGoogle Scholar
  4. acid transmitters, choline acetyltransferase and glutamate decarboxylase in the inferior colliculus, Neuroscience, 4:1947.Google Scholar
  5. Altschuler, R.A., Neises, G.R., Harmison, G.G., Wenthold, R.J., and Fex, J., 1981, Immunocytochemical localization of aspartate aminotransferaseGoogle Scholar
  6. immunoreactivity in cochlear nucleus of the guinea pig, Prot. Natl. Açad. Sci. USA, 78: 6553.Google Scholar
  7. Altschuler, R.A., Mosinger, J.L., Harmison, G.G., Parakkal, M.H., andGoogle Scholar
  8. Wenthold, R.J., 1982, Aspartate aminotransferase-like immunoreactivity as a marker for aspartate/glutamate in guinea pig photoreceptors, Nature, 298: 657.PubMedCrossRefGoogle Scholar
  9. Altschuler, R.A., Wenthold, R.J., Schwartz, A.M., Haser, W.G., CurthoysGoogle Scholar
  10. N.P., Parakkal, M., and Fex, J., 1984, Immunocytochemical localization of glutaminase-like immunoreactivity in the auditory nerve, Brain Res., 291: 173.Google Scholar
  11. Altschuler, R.A., Monaghan, D.T., Baser, W.G., Wenthold, R.J., CurthoysGoogle Scholar
  12. N.P., and Cotman, W., 1985, Immunocytochemical localization of glutaminase-like and aspartate aminotransferase-like immunoreactivitiesGoogle Scholar
  13. in the rat and guinea pig hippocampus, Brain Res., 330:225.Google Scholar
  14. Baughman, R.W., and Gilbert, C.D., 1980, Aspartate and glutamate as possible neurotransmitters of cells in layer 6 of the visual cortex, Nature, 287: 848.PubMedCrossRefGoogle Scholar
  15. Baughman, R.W., and Gilbert, C.D., 1981, Aspartate and glutamate as possible neurotransmitters in the visual cortex, J. Neurosçi., 1: 427.PubMedGoogle Scholar
  16. Beart, P.M., 1976, An evaluation of L-glutamate as the transmitter released from optic nerve terminals of the pigeon, Brain Res., 110: 99.PubMedCrossRefGoogle Scholar
  17. Beaudet, A., Burkhalter, A., Rehbi, J.-C., and Cuénod, M., 1981, Selective bidirectional transport of [HD-aspartate in the retino-tectal pathway, Neuroscience, 6: 2021.PubMedCrossRefGoogle Scholar
  18. Beckstead, R.M., 1979,. An autoradiographie examination of corticocorticalGoogle Scholar
  19. and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat, J, Comp. Neurol., 184: 43.Google Scholar
  20. Bernstein, J., Fisher, R.S., Zaczek, R., and Coyle, J., 1985, Dipeptides of glutamate and aspartate may be endogenous neuroexcitants in the rat hippocampal slice, J. Neurosci., 5: 1429.PubMedGoogle Scholar
  21. Bolz, J., Thier, P., and Brecha, N., 1985, Localization of aspartate aminotransferase and cytochrome oxidase in the cat retina, Neurosci. Lett., 53: 315.Google Scholar
  22. Bondy, S.C., and Purdy, J.L., 1977, Putative neurotransmitters of the avian visual pathways, Brain Res., 119: 417.PubMedCrossRefGoogle Scholar
  23. Bradford, H.F., and Richards, C.D., 1976, Specific release of endogenous glutamate from piriform cortex stimulated in vitro, Brain Res., 105: 168.PubMedCrossRefGoogle Scholar
  24. Bromberg, M.B., Penney, J.B., Jr., Stephenson, B.S., and Young, A.B.,1981, Evidence for glutamate as the neurotransmitter of cortico-thalamic and corticorubral pathways, Brain Res., 215: 369.Google Scholar
  25. Cangro, C.B., Sweetnam, P.M., Wrathall, J.R., Haser, W.R., Curthoys, N.P., and Neale, J.H., 1985, Localization of elevated glutaminase immunoreactivity in small DRG neurons, Brain Res., 336: 158.PubMedCrossRefGoogle Scholar
  26. Canzek, V., and Reubi, J.C., 1980, The effect of cochlear nerve lesion on the release of glutamate, aspartate and GABA from cat cochlear nucleus in vitro, Exp. Brain Res., 38: 437.Google Scholar
  27. Canzek, V., Wolfensberger, M., Amsler, U., and Cuénod, M., 1981, In vivo release of glutamate and aspartate following optic nerve stimulation, Nature, 293: 572.PubMedCrossRefGoogle Scholar
  28. Carter, C.J., 1982, Topographical distribution of possible glutamatergic pathways from the frontal cortex to the striatum and substantia nigra in rats, Neuropharmacologv, 21: 379.CrossRefGoogle Scholar
  29. Christie, M.J., Bridge, S., James, L.B., and Beart, P.M., 1985a, Excitotoxin lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area, Brain Res., 333: 169.PubMedCrossRefGoogle Scholar
  30. Christie, M.J., James, L.R., and Beart, P.M., 1985b, An excitant amino acid projection from the medial prefrontal cortex to the anterior part of nucleus accumbens in the rat, J. Neurochem., 45: 477.PubMedCrossRefGoogle Scholar
  31. Collins, G.G.S., 1979a, Effect of chronic bulbectomy on the depth distribution of amino acid transmitter candidates in rat olfactory cortex, Brain Res., 171: 552.PubMedCrossRefGoogle Scholar
  32. Collins, G.G.S., 1979b, Evidence of a neurotransmitter role for aspartate and y-aminobutyric acid in the rat olfactory cortex, J. Physiol., 291: 51.PubMedGoogle Scholar
  33. Collins, G.G.S., 1980, Release of endogenous amino acid neurotransmitter candidates from rat olfactory cortex slices: possible regulatory mechanisms and the effects of pentobarbitone, Brain Res., 190: 517.PubMedCrossRefGoogle Scholar
  34. Collins, G.G.S., Anson, J., and Probett, G.A., 1981, Patterns of endogenous amino acid release from slices of rat and guinea-pig olfactory cortex, Brain Res., 204: 103.PubMedCrossRefGoogle Scholar
  35. Collins, G.G.S., and Probett, G.A., 1981, Aspartate and not glutamate is the likely transmitter of the rat lateral olfactory tract fibres, Brain Res., 209: 231.PubMedCrossRefGoogle Scholar
  36. Collins, G.G.S., 1984, Amino acid transmitter candidates in various regions of the primary olfactory cortex following bulbectomy, Brain Res., 296: 145.PubMedCrossRefGoogle Scholar
  37. Collins, G.G.S., 1985, Excitatory amino acids as transmitters in the olfactory system, in: Excitatory Amino Acids, P.J. Roberts, J. Storm- Mathisen, and H.F. Bradford, Eds., Macmillan, London, in press.Google Scholar
  38. Crawford, I.L., and Connor, J.D., 1973, Localisation and release of glutamic acid in relation to the hippocampal mossy fibre pathway, Nature, 244: 442.PubMedCrossRefGoogle Scholar
  39. Cuénod, M., Beaudet, A., Canzek, V., Streit, P., and Reubi, J.-C., 1981, Glutamatergic pathways in the pigeon and the rat brain, in: Glutamate as a Neurotransmitter, G. Di Chiara, and G.L. Gessa, eds., Raven Press, New York, p. 57.Google Scholar
  40. Cuénod, M., Bagnoli, P., Beaudet, A., Rustioni, A., Wiklund, L., and Streit, P., 1982, Transmitter specific retrograde labeling of neurons, in:Google Scholar
  41. Cvtoohemical Methods in Neuroanatomy, V. Chan-Palay and S.L. Palay, eds., Alan R. Liss, New York, p. 17.Google Scholar
  42. Davidoff, R.A., Graham, L.T., Jr., Shank, R.P., Werman, R., and Aprison, M.H., 1967, Changes in amino acid concentrations associated with loss of spinal interneurons, J. Neurochem., 14: 1025.PubMedCrossRefGoogle Scholar
  43. De Belleroche, J.S., and Bradford, H.F., 1977, On the site of origin of transmitter amino acids released by depolarization of nerve terminals in vitro, J. Neurochem., 29: 335.PubMedCrossRefGoogle Scholar
  44. Demêmes, D., Raymond, J., and Sans, A., 1984, Selective retrograde labeling of neurons of cat vestibular ganglion with [H]D-aspartate, Brain Res., 304: 188.PubMedCrossRefGoogle Scholar
  45. Di Lauro, A., Schmid, R.W., and Meek, J.L., 1981, Is aspartic acid the transmitter of the perforant pathway? Brain Res., 207: 476.PubMedCrossRefGoogle Scholar
  46. Divac, I., Fonnum, F., and Storm-Mathisen, J., 1977, High affinity uptake of glutamate in terminals of corticostriatal axons, Nature, 266: 377.PubMedCrossRefGoogle Scholar
  47. Dolphin, A.C., Errington, M.L., and Bliss, T.V.P., 1982, Long-term potentation of the perforant path in vivo is associated with increased glutamate release, Nature, 297: 496.PubMedCrossRefGoogle Scholar
  48. Druce, D., Peterson, D., De Belleroche, J., and Bradford, H.F., 1982, Differential amino acid neurotransmitter release in rat neostriatum following lesioning of the cortico-striatal pathway, Brain Res., 247: 303.PubMedCrossRefGoogle Scholar
  49. Ehinger, B., 1981, (3H]-D-Aspartate accumulation in the retina of the pigeon, guinea-pig and rabbit, Exp. Eye Res., 33: 381.Google Scholar
  50. Engelsen, B., and Fonnum, F., 1983, Effects of hypoglycemia on the transmitter pool and the metabolic pool of glutamate in rat brain, Neurosci. Lett., 42: 317.Google Scholar
  51. Fagg, G.E., Jordan, C.C., and Webster, R.A., 1978, Descending fibre-mediated release of endogenous glutamate from the perfused cat spinal cord, in vivo, Brain Res., 158: 159.PubMedCrossRefGoogle Scholar
  52. Fischer, B.O., Ottersen, 0.P., and Storm-Mathisen, J., 1982a, Labelling of amygdalopetal and amygdalofugal projections after intra-amygdaloid injections of tritiated D-aspartate, Neuroscience, 7 (Suppl.): 569.Google Scholar
  53. Fischer, B.O., Ottersen, O.P., and Storm-Mathisen, J., 1982b, Axonal transport of D-[3H]aspartate in the claustro-cortical projection, Neuroscience, 7 (Suppl.): 569.Google Scholar
  54. Fischer, B.O., Ottersen, O.P., and Storm-Mathisen, J., 1982e, Anterograde and retrograde axonal transport of D-[3H]-aspartate (D-Asp) in hippocampal excitatory neurones, Neuroscience, 7 (Suppl.): S68.Google Scholar
  55. Fischer, B.O., Storm-Mathisen, J., and Ottersen, 0.P., 1985, Hippocampal excitatory neurons. Anterograde and retrograde axonal transport of D-[H]aspartate, in: Excitatory Amino Acids, P.J. Roberts, J. StormMathisen, and H.F. Bradford, eds., Macmillan, London, in press.Google Scholar
  56. Fischer, B.O., Ottersen, O.P., and Storm-Mathisen, J., 1986, Implantation of D-[3H]aspartate loaded gel particles permits restricted uptake sites for transmitter selective axonal transport, submitted.Google Scholar
  57. Fletcher, A., James, T.A., Kilpatrick, I.C., MacLeod, N.K., and StarrGoogle Scholar
  58. M.S., 1979, Neurochemical and electrophysiological evidence for GABAergic and glutamatergic nigro-thalamic neurones, Neurosci. Lett., Suppl. 3: 222.Google Scholar
  59. Fonnum, F., and Walaas, I., 1978, The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in hippocampus and septum, J. Neurochem., 31: 1173.PubMedCrossRefGoogle Scholar
  60. Fonnum, F., Lund Karlsen, R., Malthe-SOrenssen, D., Skrede, K.K., and Walaas, I., 1979, Localization of neurotransmitters, particularly glutamate, in hippocampus, septum, nucleus accumbens and superior colliculus, Prog. Brain Res., 51: 167.Google Scholar
  61. Fonnum, F., Storm-Mathisen, J., and Divac, I., 1981a, Biochemical evidence for glutamate as neurotransmitter in the corticostriatal and corticothalamic fibres in rat brain, Neuroscience, 6: 863.PubMedCrossRefGoogle Scholar
  62. Fonnum, F., Ureide, A. Kvale, I., Walker, J., and Walaas, I., 1981b, Glutamate in cortical fibers, in: Glutamate as a Neurotransmitter, G. Di Chiara, and G.L. Cessa, eds., Raven Press, New York, p. 29.Google Scholar
  63. Fonnum, F., and Henke, H., 1982, The topographical distribution of alanine, aspartate, y-aminobutyric acid, glutamate, glutamine, and glycine in the pigeon optic tectum and the effect of retinal ablation, J. Neuroçhem „ 38: 1130.PubMedCrossRefGoogle Scholar
  64. Fonnum, F., 1984, Glutamate: a neurotranmitter in mammalian brain, J. Neuro- çhem., 42: 1.Google Scholar
  65. Fonnum, F., Fosse, V.M., and Allen, C.N., 1984, Identification of excitatory amino acid pathways in the mammalian nervous system, in: Excitotoxins, K. Fuxe, P. Roberts, and R. Schwartz, eds., Plenum Press, New York, p. 3Google Scholar
  66. Fosse, V.M., Heggelund, P., Iversen, E., and Fonnum, F., 1984, Effects of area 17 ablation on neurotransmitter parameters in efferents to area 18, the lateral geniculate body, pulvinar and superior colliculus in the cat, Neurosci. Lett., 52: 323.Google Scholar
  67. Freeman, M.E., Lane, J.D., and Smith, J.E., 1983, Turnover rates of amino acid neurotransmitters in regions of rat cerebellum, J. Neurochem., 40: 1441.PubMedCrossRefGoogle Scholar
  68. Godfrey, D.A., Ross, C.D., Carter, J.A., Lowry, O.H., and Matschinsky, F.M., 1980, Effect of intervening lesions on amino acid distributions in rat olfactory cortex and olfactory bulb, J, Histochem, Cytochem., 28: 1157.Google Scholar
  69. Godukhin, O.V., Zharikova, A.D., and Novoselov, V.I., 1980, The release of labeled L-glutamic acid from rat neostriatum in vivo following stimulation of frontal cortex, Neuroscience, 5. 2151.PubMedCrossRefGoogle Scholar
  70. Granata, A.R., avid Reis, D.J., 1983, Release of [3H]L-glutamine acid (L-Glu) and (H]D-aspartic acid ( D-Asp) in the area of nucleus tractus solitarius in vivo produced by stimulation of the vagus nerve, Brain Res., 259: 77.Google Scholar
  71. Halâsz, N., and Shepherd, G.M., 1983, Neurochemistry of the vertebrate olfactory bulb, Neuroscience, 10: 579.PubMedCrossRefGoogle Scholar
  72. Hamberger, A., Chiang, G., Nylén, E.S., Scheff, S.W., and Cotman, C.W., 1978, Stimulus evoked increase in the biosynthesis of the putative neurotransmitter glutamate in the hippocampus, Brain Res., 143: 549.PubMedCrossRefGoogle Scholar
  73. Hamberger, A.C., Chiang, G.H., Nylén, E.S., Scheff, S.W., and Cotman, C.W., 1979, Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate, Brain Res., 168: 513.Google Scholar
  74. Hansson, E., Jarlstedt, J., and Sellström, A., 1980, Sound-stimulated 4C-glutamate release from the nucleus cochlearis, Experientia, 36: 576.PubMedCrossRefGoogle Scholar
  75. Harvey, J.A., Scholfield, C.N., Graham, L.T., Jr., and Aprison, M.H.,1975, Putative transmitters in denervated olfactory cortex, J. Neurochem., 24: 445.Google Scholar
  76. Hassler, R., Haug, P., Nitsch, C., Kim, J.S., and Paik, K., 1982, Effect of motor and premotor cortex ablation on concentrations of amino acids, monoamines, and acetylcholine and on the ultrastructure in rat striatum. A confirmation of glutamate as the specific cortico-striatal transmitter, J. Neurochem., 38: 1087.Google Scholar
  77. Heggli, P.E., Aamodt, A., and Malthe-SOrenssen, D., 1981, Kainic acid neurotoxicity: effect of systemic injection on neurotransmitter markers in different brain regions, Brain Res., 230: 253.PubMedCrossRefGoogle Scholar
  78. Henke, H., Schenker, T.M., and Cuénod, M., 1976, Effects of retinal ablation on uptake of glutamate, glycine, GAGA, proline, and choline in pigeon tectum, J. Neurochem., 26: 131.Google Scholar
  79. Hertz, L., Kvamme, E., McGeer, E.G., and Schousboe, A., 1983, Glutamine, Glutamate and GABA in the Central Nervous System, Alan R. Liss, New York.Google Scholar
  80. Hicks, T.P., Ruwe, W.D., Veale, W.L., and Veenhuizen, J., 1985,. Aspartate and glutamate as synaptic transmitters of parallel visual cortical pathways, Exo. Brain Res., 58: 421.Google Scholar
  81. Homma, S., Suzuki, T., Murayama, S., and Otsuka, M., 1979, Amino acid and substance P contents in spinal cord of cats with experimental hindlimb rigidity produced by occlusion of spinal cord blood supply, J. Neurochem., 32: 691.PubMedCrossRefGoogle Scholar
  82. Hudson, D.B., Valcana, T., Bean, G., and Timiras, P.S., 1976, Glutamic acid: a strong candidate as the neurotransmitter of the cerebellar granule cell, Neurochem. Res., 1: 73.Google Scholar
  83. Hunt, S.P., 1983, Cytochemistry of the spinal cord, in: Chemical Neuro-anatomy, P.C. Emson, ed., Raven Press, New York, p. 53.Google Scholar
  84. Johnston, G.A.R., 1976, Glutamate and aspartate as transmitters in the spinal cord, Adv. Biochem, Psychopharmacol., 15: 175.Google Scholar
  85. Jones, I.M., Jordan, C.C., Morton, I.K.M, Stagg, C.J., and Webster, R.A.,1974, The effect of chronic dorsal root section on the concentration of free amino acids in the rabbit spinal cord, J. Neurochem., 23: 1239.Google Scholar
  86. Kan, K.-S.K., Chao, L.-P., and Eng, L.F., 1978, Immunohistochemical localiza-tion of choline acetyltransferase in rabbit spinal cord and cerebellum, Brain Res., 146: 221.PubMedCrossRefGoogle Scholar
  87. Kane, E.S., 1979,. Central transport and distribution of labelled glutamic and aspartic acids to the cochlear nucleus in cats: an autoradiographie study, Neuroscience, 4: 729.Google Scholar
  88. Kerkerian, L., Nieoullon, A., and Dusticier, N., 1983, Topographic changes in high-affinity glutamate uptake in the cat red nucleus, substantia nigra, thalamus and caudate nucleus after lesions of sensorimotor cortical areas, Exp, Neurol., 81: 598.Google Scholar
  89. Kim, J.S., Hassler, R., Haug, P., and Paik, K., 1977,. Effect of frontal cortex ablation on striatal glutamic acid level in rat, Brain Res., 132: 370.Google Scholar
  90. Korf, J., and Venema, K., 1983, Amino acids in the substantia nigra of rats with striatal lesions produced by kainic acid, J. Neurochem., 40: 1171.PubMedCrossRefGoogle Scholar
  91. Kornhuber, J., Kim, J.S., Kornhuber, M.E., and Kornhuber, H.H., 1984, The cortico-nigral projection: reduced glutamate content in the substantia nigra following frontal cortex ablation in the rat, Brain Res., 322: 124.PubMedCrossRefGoogle Scholar
  92. Künzle, H., and Wiklund, L., 1.982, Identification and distribution of neurons presumed to give rise to cerebellar climbing fibers in turtle. A retrograde axonal flow study using radioactive D-aspartate as a marker, Brain Res., 252: 146.Google Scholar
  93. Kvale, I., and Fonnum, F., 1983, The effects of unilateral removal of visual cortex on transmitter parameters in the adult superior colliculus and lateral geniculate body, Develop. Brain Res., 11: 261.Google Scholar
  94. Luini, A., Tal, N., Goldberg, 0., and Teichberg, V.I., 1984, An evaluation of selected brain constituents as putative excitatory neurotransmitters, Brain Res., 324: 271.Google Scholar
  95. Lund Karlsen, R., and Fonnum, F., 1978, Evidence for glutamate as a neurotransmitter in the corticofugal fibres to the dorsal lateral geniculate body and the superior colliculus in rats, Brain Res., 151: 457.CrossRefGoogle Scholar
  96. Malthe-S6renssen, D., Skrede, K.K., and Fonnum, F., 1979, Calcium-dependent release of D-(3H]aspartate evoked by selective electrical stimulation of excitatory afferent fibers to hippocampal pyramidal cells in vitro, Neuroscience, 4: 1255.CrossRefGoogle Scholar
  97. Malthe-S6renssen, D., Skrede, K.K., and Fonnum, F., 1980, Release of D-[3H]aspartate from the dorsolateral septum after electrical stimulation of the fimbria in vitro, Neuroscience, 5: 127.CrossRefGoogle Scholar
  98. Marc, R.E., and Lam, D.M.K., 1981, Uptake of aspartic and glutamic acid by photoreceptors in goldfish retina, Proc. Natl. Acad. Sci. USA, 78: 7185.Google Scholar
  99. Matute, C., Waldvogel, H.J., Streit, P., and Cuénod, Mt’ 1984, Selective retrograde labeling following D-[3H]aspartate and [H]GABA injections in the albino rat superior colliculus, Neurosci. Lett., Suppl. 18: S190.Google Scholar
  100. McGeer, E.G., and McGeer, P.L., 1979,. Localization of glutaminase in the rat neostriatum, J. Neurochem., 32: 1071.Google Scholar
  101. McGeer, P.L., McGeer, E.G., Scherer, U., and Singh, K., 1977, A glutamatergic corticostriatal path?, Brain Res., 128: 369.PubMedCrossRefGoogle Scholar
  102. Minchin, M.C.W., and Fonnum, F., 1979, The metabolism of GABA and other amino acids in rat substantia nigra slices following lesions of the striatonigral pathway, J. Neurochem,, 32: 203.PubMedCrossRefGoogle Scholar
  103. Nadi, N.S., Kanter, D., McBride, W.J., and Aprison, M.H., 1977, Effects of 3-acetylpyridine on several putative neurotransmitter amino acids in the cerebellum and medulla of the rat, J. Neurochem., 28: 661.PubMedCrossRefGoogle Scholar
  104. Nadler, J.V., Vaca, K.W., White, W.F., Lynch, G.S., and Cotman, C.W., 1976, Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents, Nature, 260: 538.PubMedCrossRefGoogle Scholar
  105. Nadler, J.V., White, W.F., Vaca, K.W., Perry, B.W., and Cotman, C.W., 1978, Biochemical correlates of transmission mediated by glutamate and aspartate, J. Neurochem., 31: 147.PubMedCrossRefGoogle Scholar
  106. Nadler, J.V., and Smith, E.M., 1981, Perforant path lesion depletes glutamate content of fascia dentata synaptosomes, Neurosci. Lett., 25: 275.Google Scholar
  107. Naito, S., and Ueda, T., 1983, Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles, J. Biol. Chem., 258: 696.Google Scholar
  108. Naito, S., and Ueda, T., 1985, Characterization of glutamate uptake into synaptic vesicles, J. Neurochem., 44: 99.PubMedCrossRefGoogle Scholar
  109. Nieoullon, A., and Dusticier, N., 1981, Decrease in choline acetyltransferase and in high affinity glutamate uptake in the red nucleus of the cat after cerebellar lesions, Neurosci. Lett., 24: 267.Google Scholar
  110. Nieoullon, A., Kerkerian, L., and Dusticier, N., 1984, High affinity glutamate uptake in the red nucleus and ventrolateral thalamus after lesion of the cerebellum in the adult cat: biochemical evidence for functional changes in the deafferented structures, Exp. Brain Res., 55: 409.Google Scholar
  111. Nitsch, C., Kim, J.-K., Shimada, C., and Okada, Y., 1979a, Effect of hippo-campus extirpation in the rat on glutamate levels in target structures of hippocampal efferents, Neurosci. Lett., 11: 295.Google Scholar
  112. Nitsch, C., Kim, J.-K., and Shimada, C., 1979b, The commissural fibers in rabbit hippocampus: synapses and their transmitter, Progr. Brain Res., 51: 193.Google Scholar
  113. Oliver, D.L., Potashner, S.J., Jones, D.R., and Morest, D.K., 1983, Selective labeling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig, J. Neurosci., 3: 455.PubMedGoogle Scholar
  114. Ottersen, O.P., 1982, Connections of the amygdala of the rat. IV: Cortico-amygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase, J. Comp. Neurol., 205: 30.Google Scholar
  115. Ottersen, O.P., Fisher, B.O., and Storm-Mathisen, J., 1983, Retrograde transport of D-[H]aspartate in thalamocortical neurones, Neurosci. Lett., 42: 19.Google Scholar
  116. Ottersen, O.P., and Storm-Mathisen, J., 1984a, Neurons containing or accumulating transmitter amino acids, in: Handbook of Chemical Neuroanatomv, A. Björklund, T. Hökfelt, and M.J. Kuhar, eds., Elsevier/North-Holland, Amsterdam, p. 141.Google Scholar
  117. Ottersen, O.P., and Storm-Mathisen, J., 1984b, Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique, J. Comp, Neurol., 229: 374.Google Scholar
  118. Ottersen, O.P., and Storm-Mathisen, J., 1984c, Neurotransmitters in the hippocampal formation and related structures, Neurosci. Lett., Suppl. 18: S147Google Scholar
  119. Ottersen, O.P., Fischer, B.O., Rinvik, E., and Storm-Mathisen, J., 1986, Putative amino acid transmitters in the amygdala, in: Excitatory Amino Acids and Epilepsy, R. Schwarcz and Y. Ben-Ari, eds., Plenum Press, London, in press.Google Scholar
  120. Ottersen, O.P., and Storm-Mathisen, J., 1985, Different neuronal localization of aspartate-like and glutamate-like immunoreactivities in the hippocampus of cat, guinea pig, and Senegalese baboon ( Papio papio), with a note on the distribution of GABA, Neuroscience, 16: 589.Google Scholar
  121. Patel, A.J., and Hunt, A., 1985, Concentration of free amino acids inGoogle Scholar
  122. primary cultures of neurones and astrocytes, J. Neurochem., 44: 1816.Google Scholar
  123. Perrone, M.H., 1981, Biochemical evidence that L-glutamate is a neurotrans-mitter of primary vagal afferent nerve fibers, Brain Res., 230: 283.PubMedCrossRefGoogle Scholar
  124. Peterson, N.A., and Raghupathy, E., 1974, Selective effects of lithium on synaptosomal amino acid transport systems, Biochem. Pharmacol., 23: 2491.Google Scholar
  125. Potashner, S.J., 1983,. Uptake and release of D-aspartate in the guineapig cochlear nucleus, J, Neurochem., 41: 1094.Google Scholar
  126. Potashner, S.J., and Tran, P.L., 1985, Decreased uptake and release of D-aspartate in the guinea pig spinal cord after partial cordotomy, J. Neurochem., 44: 1511.PubMedCrossRefGoogle Scholar
  127. Raymond, J., Nieoullon, A., Demémes, D., and Sans, A., 1984, Evidence for glutamate as a neurotransmitter in the cat vestibular nerve: radio-autographic and biochemical studies, Exp. Brain Res., 56: 523.Google Scholar
  128. Rea, M.A., and McBride, W.J., 1978, Effects of X-irradiation on the levels of glutamate, aspartate and GABA in different regions of the cerebellum of the rat, Life Soi., 23: 2355.CrossRefGoogle Scholar
  129. Rea, M.A., McBride, W.J., and Rohde, B.H., 1980, Regional and synaptosomal levels of amino acid neurotransmitters in the 3-acetylpyridine deafferentated rat cerebellum, J. Neurochem., 34: 1106.PubMedCrossRefGoogle Scholar
  130. Rea, M.A., McBride, W.J., and Rohde, B.H., 1981, Levels of glutamate, aspartate, GABA, and taurine in different regions of the cerebellum after X-irradiation-induced neuronal loss, Neurochem. Res., 6: 33.Google Scholar
  131. Recasens, M., Benzra, R., Basset, P., and Mandel, P., 1980, Cysteine sulfinate aminotransferase and aspartate aminotransferase isoenzymes of rat brain. Purification, characterization, and further evidence for identity, Biochemistry, 19: 4583.Google Scholar
  132. Reis, D.J., Granata, A.R., Perrone, M.H., and Talman, W.T., 1981, Evidence that glutamic acid is the neurotransmitter of baroreceptor afferents terminating in the nucleus tractus solitarius ( NTS ), J. Auton. Nerv. Svst., 3: 321.Google Scholar
  133. Reubi, J.C., and Cuénod, M., 1979, Glutamate release in vitro from corticostriatal terminals, Brain Res., 176: 185.PubMedCrossRefGoogle Scholar
  134. Reubi, J.C., Toggenburger, C., and Cuénod, M., 1980, Asparagine as a precursor for transmitter aspartate in corticostriatal fibres, J. Neurochem., 35: 1015.PubMedCrossRefGoogle Scholar
  135. Roberts, F., and Hill, R.G., 1978,. The effect of dorsal column lesions on amino acid levels and glutamate uptake in rat dorsal column nuclei, J. Neurochem., 31: 1549.Google Scholar
  136. Roberts, P.J., 1974, The release of amino acids with proposed neurotransmitter function from the cuneate and gracile nuclei of the rat in vivo, Brain Res., 67: 419.PubMedCrossRefGoogle Scholar
  137. Roberts, P.J., and Keen, P., 1974, Effect of dorsal root section on amino acids of rat spinal cord, Brain Res., 74: 333.PubMedCrossRefGoogle Scholar
  138. Roberts, P.J., McBean, G.J., Sharif, N.A., and Thomas, E.M., 1982,. Striatal glutamatergic function: modifications following specific lesions, Brain Res., 235: 83.Google Scholar
  139. Roffler-Tarlov, S., and Sidman, R.L., 1978, Concentrations of glutamic acid in cerebellar cortex and deep nuclei of normal mice and weaver, staggerer and nervous mutants, Brain Res., 142: 269.PubMedCrossRefGoogle Scholar
  140. Roffler-Tarlov, S., and Turey, M., 1982, The content of amino acids in the developing cerebellar cortex and deep cerebellar nuclei of granule cell deficient mutant mice, Brain Res., 247: 65.PubMedCrossRefGoogle Scholar
  141. Rohde, B.H., Rea, M.A., Simon, J.R., and McBride, W.J., 1979, Effects of X-irradiation induced loss of cerebellar granule cells on synaptosomal levels and the high affinity uptake of amino acids, J. Neurochem., 32: 1431.PubMedCrossRefGoogle Scholar
  142. Ross, C.D., and Godfrey, D.A., 1985, Distributions of aspartate aminotransferase and malate dehydrogenase activities in rat retinal layers,J. Histochem, Cvtochem., 33: 624.Google Scholar
  143. Rowlands, G.J., and Roberts, P.J., 1980, Specific calcium-dependent release of endogenous glutamate from rat striatum is reduced by destruction of the cortico-striatal tract, EXP. Brain Res., 39: 239.Google Scholar
  144. Rustioni, A., and Cuénod, M., 1982, Selective retrograde transport of D-aspartate in spinal interneurons and cortical neurons of rats, Brain Res., 236: 143.PubMedCrossRefGoogle Scholar
  145. Sandberg, M., Bradford, H.F., and Richards, C.D., 1984, Effect of lesions of the olfactory bulb on the levels of amino acids and related enzymes in the olfactory cortex of the guinea pig, J. Neurochem., 43: 276.PubMedCrossRefGoogle Scholar
  146. Sandberg, M., Ward, H.K., and Bradford, H.F., 1985, Effect of corticostriate pathway lesion on the activities of enzymes involved in synthesis and metabolism of amino acid neurotransmitters in the striatum, J. Neurochem., 44: 42.PubMedCrossRefGoogle Scholar
  147. Sandoval, M.E., and Cotman, C.W., 1978, Evaluation of glutamate as a neurotransmitter of cerebellar parallel fibers, Neuroscience, 3: 199.PubMedCrossRefGoogle Scholar
  148. Scholfield, C.N., Moroni, F., Corradetti, R., and Pepeu, G., 1983, Levels and synthesis of glutamate and aspartate in the olfactory cortex following bulbectomy, J, Neurochem., 41: 135.CrossRefGoogle Scholar
  149. Skrede, K.K., and Malthe-SOrenssen, D., 1981a, Increased resting and evoked release of transmitter following repetitive electrical tetanization in hippocampus: a biochemical correlate to longlasting synaptic potentiation, Brain Res., 208: 436.PubMedCrossRefGoogle Scholar
  150. Skrede R.K., and Malthe-Seirenssen, D., 1981b, Differential release of D-[H]aspartate and [14C]y-aminobutyric acid following activation of commissural fibres in a longitudinal slice preparation of guinea pig hippocampus, Neurosci. Lett., 21: 71.Google Scholar
  151. Spencer, H.J., Tominez, G., and Halpern, B., 1981, Mass spectographic analysis of stimulated release of endogenous amino acids from rat hippocampal slices, Brain Res., 212: 194.PubMedCrossRefGoogle Scholar
  152. Sterri, S.H., and Fonnum, F., 1980, Acetyl-CoA synthesizing enzymes in cholinergie nerve terminals, J. Neurochem., 35: 249.PubMedCrossRefGoogle Scholar
  153. Storm-Mathisen, J., 1977, Glutamic acid and excitatory nerve endings: reduction of glutamic acid uptake after axotomy, Brain Res., 120: 379.PubMedCrossRefGoogle Scholar
  154. Storm-Mathisen, J., 1978, Localization of putative transmitters in the hippocampal formation with a note on the connection to septum and hypothalamus, in: Functions of the Seotohippocampal System, Ciba Foundation Symposium, 58 ( New Series), Elsevier/Excerpta Medica/North Holland, Amsterdam, p. 49Google Scholar
  155. Storm-Mathisen, J., and Woxen-Opsahl, M., 1.978, Aspartate and/or glutamate may be transmitters in hippocampal efferents to septum and hypothalamus, Neurosci, Lett., 9:65 Google Scholar
  156. Storm-Mathisen, J., and Iversen, L.L., 1979, Uptake of [3H]glutamic acid in excitatory nerve endings: light and electronmicroscopic observations in the hippocampal formation of the rat, Neuroscience, 4: 1237.PubMedCrossRefGoogle Scholar
  157. Storm-Mathisen, J., 1981, Autoradiographie and microchemical localization of high affinity glutamate uptake, in: Glutamate: Transmitter in the Central Nervous System, P.J. Roberts, J. Storm-Mathisen, and G.A.R. Johnston, eds., John Wiley and Sons, Chichester, p. 89.Google Scholar
  158. Storm-Mathisen, J., and Wold, J.E. 1981, In vivo high-affinity uptake and axonal transport of D-[2,3-’Hlaspartate in excitatory neurons, Brain Res., 230: 427.PubMedCrossRefGoogle Scholar
  159. Storm-Mathisen, J., 1982, Amino acid compartments in hippocampus: an autoradiographie approach, in: Neurotransmitter Interaction and Compartmentation, H.F. Bradford, ed., Plenum Press, New York, p. 395.Google Scholar
  160. Storm-Mathisen, J., Leknes, A.K., Bore, A.T., Vaaland, J.L., Edminson, P., Haug, F.-M.S., and Ottersen, 0.P., 1983, First visualization of glutamate and GABA in neurones by immunocytochemistry, Nature, 301: 517.PubMedCrossRefGoogle Scholar
  161. Storm-Mathisen, J., and Ottersen, 0.P., 1985, Antibodies against amino acid transmitters, in: Neurohistochemistry Today, P. Panula,H. Päivärinta, and S. Soinila, eds., Alan R. Liss, New York, in press.Google Scholar
  162. Streit, P., 1980, Selective retrograde labeling indicating the transmitter of neuronal pathways, J. Comp, Neurol., 191: 429.Google Scholar
  163. Svenneby, G., and Storm-Mathisen, J., 1983, Immunological studies on phosphate activated glutaminase, in: Glutamine. Glutamate. and GABA in the Central Nervous System, L. Hertz, E. Kvamme, E.G., McGeer, and A. Schousboe, eds., Alan R. Liss, New York, p. 69.Google Scholar
  164. Talman, W.T., Perrone, M.H., and Reis, D.J., 1980, Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers, Science, 209: 813.PubMedCrossRefGoogle Scholar
  165. Taniyama, K., Nitsch, C., Wagner, A., and Hassler, R., 1980,. Aspartate, glutamate and GABA levels in pallidum, substantia nigra, center median and dorsal raphe nuclei after cylindric lesion of caudate nucleus in cat, Neurosci. Lett., 16: 155.Google Scholar
  166. Taxt, T., and Storm-Mathisen, J., 1984, Uptake of D-aspartate and L-glutamate in excitatory axon terminals in hippocampus: autoradiographie and biochemical comparison with y-aminobutyrate and other amino acids in normal rats and in rats with lesions, Neuroscience, 11: 79.PubMedCrossRefGoogle Scholar
  167. Thangnipon, W., al2d Storm-Mathisen, J., 1981, K+-evoked Ca +-dependent release of D-[H]aspartate from terminals of the cortico-pontine pathway, Neurosci. Lett., 23: 181.Google Scholar
  168. Thangnipon, W., Taxt, T., Brodal, P., and Storm-Mathisen, J., 1983, The cortico-pontine projection: axotomy-induced loss of high affinity L-glutamate and D-aspartate uptake, but not of GABA uptake, glutamate decarboxylase or choline acetyltransferase, in the pontine nuclei, Neuroscience, 8: 449.PubMedCrossRefGoogle Scholar
  169. Toggenburger, G., Wiklund, L., Henke, H., and Cuénod, M., 1983, Release of endogenous and accumulated exogenous amino acids from slices of normal and climbing fibre-deprived rat cerebellar slices, J. Neurochem., 41: 1606.PubMedCrossRefGoogle Scholar
  170. Valcana, T., Hudson, D., and Timiras, P.S., 1972, Effects of X-irradiation on the content of amino acids in the developing rat cerebellum, J. Neurochem„ 19: 2229.PubMedCrossRefGoogle Scholar
  171. Walaas, I., and Fonnum, F., 1979, The effect of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat, Neuroscience, 4: 209.PubMedCrossRefGoogle Scholar
  172. Walaas, I., and Fonnum, F., 1980, Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain, Neuroscience, 5: 1691.PubMedCrossRefGoogle Scholar
  173. Walaas, I., 1981, Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain, Neuroscience, 6:399.Google Scholar
  174. Walker, J.E., and Fonnum, F., 1983a, Regional cortical glutamergic and aspartergic projections to the amygdala and thalamus of the rat, Brain Res., 267: 371.PubMedCrossRefGoogle Scholar
  175. Walker, J.E., and Fonnum, F., 1983b, Effect of regional cortical ablations on high-affinity D-aspartate uptake in striatum, olfactory tubercle and pyriform cortex of the rat, Brain Res., 278: 283.PubMedCrossRefGoogle Scholar
  176. Ward, H.K., Thanki, C.M., Peterson, D.W., and Bradford, H.F., 1987., Brain glutaminase activity in relation to transmitter glutamate biosynthesis, Biochem. Soc. Trans., 10: 369.Google Scholar
  177. Watanabe, K., and Kawana, E., 1984, Selective retrograde transport of tritiated D-aspartate from the olfactory bulb to the anterior olfactory nucleus, pyriform cortex and nucleus of the lateral olfactory tract in the rat, Brain Res., 296: 148.PubMedCrossRefGoogle Scholar
  178. Wenthold, R.J., and Gulley, R.L., 1977, Aspartic acid and glutamic acid levels in the cochlear nucleus after auditory nerve lesion, Brain Res., 138: 111.PubMedCrossRefGoogle Scholar
  179. Wenthold, R.J., 1978, Glutamic acid and aspartic acid in subdivisions of the cochlear nucleus after auditory nerve lesion, Brain Res., 143: 544.PubMedCrossRefGoogle Scholar
  180. Wenthold, R.J., and Gulley, R.L., 1978, Glutamie and aspartic acid in the cochlear nucleus of the waltzing guinea pig, Brain Res., 158: 295.PubMedCrossRefGoogle Scholar
  181. Wenthold, R.J., 1979, Release of endogenous glutamic acid, aspartic acid and GABA from cochlear nucleus slices, Brain Res., 162: 338.PubMedCrossRefGoogle Scholar
  182. Wenthold, R.J., 1980, Glutaminase and aspartate aminotransferase decrease in the cochlear nucleus after lesion of the auditory nerve, Brain Res., 190: 293.PubMedCrossRefGoogle Scholar
  183. Wenthold, R.J., and Altschuler, R.A., 1983, Immunocytochemistry of aspartate aminotransferase and glutaminase, in: Glutamine, Glutamate, and GABA in the Central Nervous System, L. Hertz, E. Kvamme, E.G. McGeer and A. Schousboe, eds., Alan R. Liss, New York, p. 33.Google Scholar
  184. Wenthold, R.J., and Altschuler, R.A., 1985, Immunocytochemical localization of enzymes involved in the metabolism of excitatory amino acids, in: Excitatory Amino Acids, P.J. Roberts, J. Storm-Mathisen, and H.F. Bradford, eds., Macmillan, London, in press.Google Scholar
  185. Wiklund, L., Toggenburger, G., and Cuénod, M., 1982, Aspartate: possible neurotransmitter in cerebellar climbing fibers, Science, 216: 78.PubMedCrossRefGoogle Scholar
  186. Wiklund, L., and Cuénod, M., 1984, Differential labelling of afferents to thalamic centromedian-parafascicular nuclei with [H]choline and D-[H]aspartate: further evidence for transmitter specific retrograde labelling, Neurosci. Lett., 46: 275.Google Scholar
  187. Wiklund, L., Toggenburger, G., and Cuénod, M., 1984, Selective retrograde labelling of the rat olivocerebellar climbing fiber system with D-[3H] aspartate, Neuroscience, 13: 441.PubMedCrossRefGoogle Scholar
  188. Wilkin, G.P., Garthwaite, J., and Balfizs, R., 1982, Putative acidic amino acid transmitters in the cerebellum. H. Electron microscopic localization of transport sites, Brain Res., 244: 69.Google Scholar
  189. Wroblewski, J.T., Blaker, W.D., and Meek, J.L., 1985, Ornithine as a precursor of neurotransmitter glutamate: effect of canaline on ornithine aminotransferase activity and glutamate content in the septum of rat brain, Brain Res., 329: 161.PubMedCrossRefGoogle Scholar
  190. Yamamoto, C., and Matsui, S., 1976, Effect of stimulation of excitatory nerve tract on release of glutamic acid from olfactory cortex slices in vitro, J. Neurochem., 26: 487.PubMedCrossRefGoogle Scholar
  191. Yates, R.A., and Roberts, P.J., 1974, Effects of enucleation and intraocular colchicine on the amino acids of frog optic tectum, J. Neurochem., 23: 891.PubMedCrossRefGoogle Scholar
  192. Young, A.B., Oster-Granite, M.L., Herndon, R.M., and Snyder, S.H., 1974, Glutamic acid: selective depletion by viral induced granule cell loss in hamster cerebellum, Brain Res., 73: 1.PubMedCrossRefGoogle Scholar
  193. Young, A.B., Bromberg, M.B., and Penney, J.B., Jr., 1981, Decreased glutamte uptake in subcortical areas deafferented by sensorimotor cortical ablation in the cat, J, Neurosci., 1: 241.Google Scholar
  194. Zaczek, R., Hedreen, J.C.., and Coyle, J.T., 1979, Evidence for a hippocampal-septal glutamatergic pathway in the rat, Exp. Neurol., 65: 145.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • O. P. Ottersen
    • 1
  • J. Storm-Mathisen
    • 1
  1. 1.Anatomical InstituteUniversity of OsloOslo 1Norway

Personalised recommendations