The Heat Shock Response: A Model System for the Study of Gene Regulation in Drosophila

  • M. L. Pardue
  • M. P. Scott
  • R. V. Storti
  • J. A. Lengyel
Part of the Basic Life Sciences book series (BLSC, volume 16)


It is generally believed that development in higher organisms is controlled by sets of coordinately regulated genes, sometimes referred to as “batteries of genes”. Such gene batteries would provide the most economical explanation for cases where a single developmental stimulus, such as a hormone, seems to induce a complex but well-regulated differentiation response.


Heat Shock Polytene Chromosome Heat Shock Response Rabbit Reticulocyte Lysate Heat Shock Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artavanis-Tsakonas, S., Schedl, P., Mirault, M.-E., Moran, L.,and Lis, J., 1979, Genes for the 70,000 dalton heat shock protein in two cloned D. melanogaster DNA segments, Cell, 17: 9.PubMedCrossRefGoogle Scholar
  2. Ashburner, M., 1970, Patterns of puffing activity in salivary glands of Drosophila V. Responses to environmental treatment, Chromosoma, 31: 356.PubMedCrossRefGoogle Scholar
  3. Ashburner, M., and Bonner, J.J., 1979, The induction of gene activity in Drosophila by heat shock, Cell, 17: 241.PubMedCrossRefGoogle Scholar
  4. Bonner, J.J., and Pardue, M.L., 1977, Polytene chromosome puffing and in situ hybridization measure different aspects of RNA metabolism, Cell, 12: 227.PubMedCrossRefGoogle Scholar
  5. Eschalier, G., and Ohanessian, A., 1969, In vitro culture of Dro- sophila melanogaster embryonic cells, In Vitro, 6: 162.CrossRefGoogle Scholar
  6. Ish-Horowicz, D., Pinchin, S.M., Schedi, P., Artavanis-Tsakonas, S., and Mirault, M.-E., 1980, Genetic and molecular analysis of the 87A7 and 87C1 heat-inducible loci of Drosophila melanogaster, Cell, in press.Google Scholar
  7. Lakhotia, S.C., 1971, Benzamide as a tool for gene activity studies in Drosophila, Abstract of the Fourth Cell Biol. Conf., New Delhi.Google Scholar
  8. Leenders, H.J., and Berendes, H.D., 1972, The effect of changes in the respiratory metabolism upon genome activity in Drosophila I. The induction of gene activity, Chromosoma, 37: 433.PubMedCrossRefGoogle Scholar
  9. Lengyel, J., Spradling, A., and Penman, S., 1975, Methods with insect cells in suspension culture II. Drosophila melanogaster, Meth. Cell Biol., 10: 195.CrossRefGoogle Scholar
  10. Lindsley, D.E., and Poodry, C.A., 1977, A reversible temperature-induced developmental arrest in Drosophila, Devel. Biol., 56: 213.CrossRefGoogle Scholar
  11. Lis, J., Prestidge, L., and Hogness, D.S., 1978, A novel arrangement of tandemly repeated genes at a major heat shock site in D. melanogaster, Cell, 14: 901.PubMedCrossRefGoogle Scholar
  12. Livak, K.F., Freund, R., Schweber, M., Wensink, P.C., and Meselson, M., 1978, Sequence organization and transcription at two heat shock loci in Drosophila, Proc. Natl. Acad. Sci. USA, 75: 5613.PubMedCrossRefGoogle Scholar
  13. McKenzie, S.L.,1976, Protein and RNA synthesis induced by heat shock in Drosophila melanogaster tissue culture cells, Ph.D. Thesis, Harvard University, Cambridge, Massachusetts.Google Scholar
  14. McKenzie, S.L., and Meselson, M., 1977, Translation in vitro of Drosophila heat-shock messages, J. Mol. Biol., 117: 279.PubMedCrossRefGoogle Scholar
  15. Mirault, M.-E., Goldschmidt-Clermont, M., Moran, L., Arrigo, A.P., and Tissieres, A., 1978, The effect of heat shock on gene expression in Drosophila melanogaster, Cold Spring Harbor Symp. Quant. Biol., 42: 819.PubMedCrossRefGoogle Scholar
  16. O’Farrell, P.H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 250: 4007.PubMedGoogle Scholar
  17. Pardue, M.L., Bonner, J.J., Lengyel, J.A., and Spradling, A.C., 1977, Drosophila salivary gland polytene chromosomes studied by in situ hybridization, in:“International Cell Biology, 1976–1977”, B.R. Brinkley and K.R. Porter, eds., Rockefeller Press, New York, p. 509.Google Scholar
  18. Pearson, W.R., Davidson, E.H., and Britten, R.J., 1977, A program for least squares analysis of reassociation and hybridization data, Nucleic Acids Res., 4: 1727.PubMedCrossRefGoogle Scholar
  19. Pelham, H.R.B., and Jackson R.J., 1976, An efficient mRNA-dependent translation system from reticulocyte lysates, Eur. J. Biochem., 67: 247.PubMedCrossRefGoogle Scholar
  20. Ritossa, F.M., 1962, A new puffing pattern induced by heat shock and DNP in Drosophila, Experientia, 18: 571.CrossRefGoogle Scholar
  21. Ritossa, F.M., 1964, Experimental activation of specific loci in polytene chromosomes of Drosophila, Exp. Cell Res., 35: 601.PubMedCrossRefGoogle Scholar
  22. Scott, M.R., Storti, R.V., Pardue, M.L., and Rich, A., 1979, Cell-free protein synthesis in lysates of Drosophila melanogaster cells, Biochemistry, 18: 1588.PubMedCrossRefGoogle Scholar
  23. Spradling, A.C., Pardue, M.L., and Penman, S., 1977, Messenger RNA in heat-shocked Drosophila cells, J. Mol. Biol., 109: 559.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • M. L. Pardue
    • 1
  • M. P. Scott
    • 1
  • R. V. Storti
    • 2
  • J. A. Lengyel
    • 3
  1. 1.Biology DepartmentMassachusetts Institute of TechnologyBostonUSA
  2. 2.Department of Biological ChemistryUniversity of Illinois Medical CenterChicagoUSA
  3. 3.Department of BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations