Visual Guidance in Drosophila

  • Karl G. Götz
Part of the Basic Life Sciences book series (BLSC, volume 16)


One of the last enquiries inspired by Theodosius Dobzhansky is entitled, “How far do flies fly?”.1 The paper refers to several field studies where a labelled strain of Drosophila was released and its dispersal measured by recapture of labelled flies on subsequent days. If the dispersal is simply due to random movements of the flies, then it should be analogous to the dispersal of small particles performing Brownian movements. Expected, in this case, is a normal distribution of the flies such that the increase of their mean distance from the release point is proportional to the square root of the time elapsed since the release. The expected time dependence of the dispersal seems to hold, more or less, for colonies of D. pseudoobscura, and the diffusion model may be considered as a reasonable first approximation of the locomotor behavior. However, the expected profile of the distribution has not been verified. Conspicuously more flies were recaptured both near the release point and at the outer periphery of the field. This discrepancy was explained by the tendency of Drosophila either to remain in a favorable habitat, or to cover great distances in search of such a habitat. The observation suggests that the control of locomotion can be adapted by the fly to different situations and requirements. The locomotor behavior of D. melanogaster has been extensively studied in laboratory experiments. Most of the results obtained so far refer to optomotor responses which enable the fly to maintain a given course and altitude over extended periods of time.


Retinal Image Visual Object Optic Lobe Visual Guidance Visual Landmark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Powell and T. Dobzhansky, How far do flies fly?, Amer. Scientist 64: 179 (1976).Google Scholar
  2. 2.
    K.G. Götz, Optische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila, Kybernetik 2: 77 (1964).PubMedCrossRefGoogle Scholar
  3. 3.
    K.G. Götz, Flight control in Drosophila by visual perception of motion, Kybernetik 4: 199 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    K.G. Götz and H. Wenking, Visual control of locomotion in the walking fruitfly Drosophila, J. Comp. Physiol. 85: 235 (1973).CrossRefGoogle Scholar
  5. 5.
    K.G. Götz, B. Hengstenberg, and R. Biesinger, Optomotor control of wing beat and body posture in Drosophila, Biol. Cybern. 35: 101 (1979).CrossRefGoogle Scholar
  6. 6.
    E. Buchner, Elementary movement detectors in an insect visual system, Biol. Cybern. 24: 85 (1976).CrossRefGoogle Scholar
  7. 7.
    E. Buchner, K.G. Götz, and C. Straub, Elementary detectors for vertical movement in the visual system of Drosophila. Biol. Cybern. 31: 235 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    K.G. Götz, and E. Buchner, Evidence for one-way movement detection in the visual system of Drosophila, Biol. Cybern. 31: 243 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Blondeau (in preparation).Google Scholar
  10. 10.
    M. Heisenberg and K.G. Götz, The use of mutations for the partial degradation of vision in Drosophila melanogaster, J. Comp. Physiol. 98: 217 (1975).CrossRefGoogle Scholar
  11. 11.
    M. Heisenberg and E. Buchner, The role of retinula cell types in visual behavior of Drosophila melanogaster, J. Comp. Physiol. 117: 127 (1977).CrossRefGoogle Scholar
  12. 12.
    M. Heisenberg, R. Wonneberger, and R. Wolf, Optomotor-blind H31 a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. 124: 287 (1978).CrossRefGoogle Scholar
  13. 13.
    M. Heisenberg and R. Wolf, On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster, J. Comp. Physiol. 130: 113 (1979).CrossRefGoogle Scholar
  14. 14.
    M. Heisenberg, Genetic approach to a visual system, in: “Handbook of Sensory Physiology,Vol. VII/6A Comparative Physiology and Evolution of Vision in Invertebrates., H. Autrum, ed., Berlin-Heidelberg-New York, Springer (1979).Google Scholar
  15. 15.
    G. Heide, Proprioceptorische Beeinflussung der Impulsmusterbildung im neuromotorischen System fliegender Dipteren, Verh. Dtsch. Zool. Ges. 1978, p. 256 (1978).Google Scholar
  16. 16.
    G. Heide and K.G. Götz, (in preparation).Google Scholar
  17. 17.
    K.G. Götz, The optomotor equilibrium of the Drosophila navigation system, J. Comp. Physiol. 99: 187 (1975).CrossRefGoogle Scholar
  18. 18.
    W. Reichardt and T. Poggio, Visual control of orientation behavior in the fly. I. A quantitative analysis, Quart. Rev. Biophys. 9: 311 (1976).CrossRefGoogle Scholar
  19. 19.
    T. Poggio and W. Reichardt, Visual control of orientation behavior in the fly. II. Towards the underlying neural interactions, Quart. Rev. Biophys. 9: 377 (1976).CrossRefGoogle Scholar
  20. 20.
    W. Reichardt, Functional characterization of neural interactions through an analysis of behavior, in:“The Neurosciences” Fourth Study Program, F.O. Schmitt and F.G. Worden, eds., The MIT Press, Cambridge, Mass. (1979).Google Scholar
  21. 21.
    K.G. Götz, Hirnforschung am Navigationssystem der Fliegen, Naturwissenschaften 62: 468 (1975).CrossRefGoogle Scholar
  22. 22.
    K.G. Götz, Sehen, Abbilden, Erkennen - Verhaltensforschung am visuellen System der Fruchtfliege Drosophila, Verh. Schweiz. Naturf. Ges. 1975, p. 10 (1975).Google Scholar
  23. 23.
    E. Horn and R. Wehner, The mechanism of visual pattern fixation in the walking fly Drosophila melanogaster, J. Comp. Physiol. 101: 39 (1975).CrossRefGoogle Scholar
  24. 24.
    E. Horn, The mechanism of object fixation and its relation to spontaneous pattern preferences in Drosophila melanogaster, Biol. Cybern. 31: 145 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    H. Bülthoff, (in preparation).Google Scholar
  26. 26.
    H. Bülthoff, K.G. Götz, and M. Herre, (in preparation).Google Scholar
  27. 27.
    T.S. Collett and M.F. Land, Visual control of flight behavior in the hoverfly, Syritta pipiens L., J. Comp. Physiol. 99: 1 (1975).CrossRefGoogle Scholar
  28. 28.
    K.F. Fischbach, Simultaneous and successive color contrast expressed in “slow phototactic”behavior of walking Drosophila melanogaster, J. Comp. Physiol. 130: 161 (1979).CrossRefGoogle Scholar
  29. 29.
    R. Willmund, Light induced modification of phototactic behavior of Drosophila melanogaster, II. Physiological aspects, J. Comp. Physiol. 129: 35 (1979).CrossRefGoogle Scholar
  30. 30.
    B. Gebhardt, R. Wolf, R. Gademann, and M. Heisenberg, Polarization sensitivity of course control in Drosophila melanogaster, (in preparation).Google Scholar
  31. 31.
    K.G. Götz, Spontaneous preferences of visual objects in Drosophila, Drosophila Inform. Serv. 46: 62 (1971).Google Scholar
  32. 32.
    T.S. Collett and M.F. Land, How hoverflies compute interception courses, J. Comp. Physiol. 125: 191 (1978).CrossRefGoogle Scholar
  33. 33.
    R. Cook, The courtship tracking of Drosophila melanogaster, Biol. Cybern. 34: 91 (1979).CrossRefGoogle Scholar
  34. 34.
    R. Cook, The extent of visual control in the courtship tracking of D. melanogaster, Biol. Cybern. (in press).Google Scholar
  35. 35.
    J.C. Hall, Control of male reproductive behavior by the central nervous system of Drosophila: Dissectionof a courtship pathway by genetic mosaics, Genetics 92: 437 (1979).PubMedGoogle Scholar
  36. 36.
    W. Reichardt and T. Poggio, Figure-ground discrimination by relative movement in the visual system of the fly, I. Experimental results, Biol. Cybern. 35: 81 (1979).CrossRefGoogle Scholar
  37. 37.
    H. Bülthoff and K.G. Götz, Analogous motion illusion in man and fly, Nature 278: 636 (1979).PubMedCrossRefGoogle Scholar
  38. 38.
    E. Buchner, S. Buchner and,R. Hengstenberg, 2-Deoxy-D-glucose maps movement-specific nervous activity in the second, visual ganglion of Drosophila, Science 205: 687 (1979).PubMedCrossRefGoogle Scholar
  39. 39.
    R.J. Greenspan, J.A. Finn, and J.C. Hall, Acetylcholinesterase mutants in Drosophilaand their effects on the structure and and function of the central nervous system, J. Comp. Neurol. (in press).Google Scholar
  40. 40.
    R. Hengstenberg, The effect of pattern movement on the impulse activity of the cervical connective of Drosophila melanogaster, Z. Naturforsch. 28c: 593 (1973).Google Scholar
  41. 41.
    A.W. Ewing, The neuromuscular basis of courtship song in Drosophila: the role of the direct and axillary wing muscles, J. Comp. Physiol. 130: 87 (1979).CrossRefGoogle Scholar
  42. 42.
    K. Hausen, Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala, Z. Naturforsch. 31c: 629 (1976).Google Scholar
  43. 43.
    R. Hengstenberg, Spike response of “non-spiking” visual inter-neurone, Nature 270: 338 (1977).PubMedCrossRefGoogle Scholar
  44. 44.
    H.E. Eckert and L.G. Bishop, Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata, J. Comp. Physiol. 126: 57 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Karl G. Götz
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenFederal Republic of Germany

Personalised recommendations