Photoreceptor Function

  • W. L. Pak
  • S. K. Conrad
  • N. E. Kremer
  • D. C. Larrivee
  • R. H. Schinz
  • F. Wong
Part of the Basic Life Sciences book series (BLSC, volume 16)


For many years, we have been interested in elucidating the mechanism underlying the phototransduction process. By phototransduction we mean that process by which light signals from the environment are converted to electrical signals across the photoreceptor membrane, or, put another way, the process by which light signals modulate the permeability of the photoreceptor membrane to certain inorganic ions. The problem is of interest to many neuro-biologists because the sensory transduction process is one of the basic unsolved problems in cellular neurophysiology and also because the study of phototransduction may provide insight into other neuronal excitation phenomena, all of which involve alterations in the membrane permeability to ions. In this discussion, we will forego detailed discussions of the results that have already been published (see review: Pak, 1979) and concentrate on more recent ones even though many of them are still in a preliminary form.


Visual Pigment Photoreceptor Membrane Photoreceptor Function Blue Stimulus Vertebrate Photoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, E.W., and Ostroy, S.E., 1967, The photochemical and macromolecular aspects of vision, Prog. Biophys. Mol. Biol., 17:179.PubMedCrossRefGoogle Scholar
  2. Alawi, A.A., Jennings, V., Grossfield, J., and Pak, W.L., 1972, Phototransduction mutants of Drosophila melanogaster, in: “The Visual System: Neurophysiology, Biophysics, and Their Clinical Applications”, G.B. Arden, ed., Plenum Press, New York, pp. 1–21.Google Scholar
  3. Boschek, C.B., and Hamdorf, K., 1976, Rhodopsin particles in the photoreceptor membrane of an insect, Z. Naturforsch., 31c:763.Google Scholar
  4. Bridges, C.D.B., 1967, Biochemistry of visual processes, in: “Comp-rehensive Biochemistry, Vol. 27”, M. Florkin and E.H. Stotz, eds., Elsevier, Amsterdam, pp. 31–78.Google Scholar
  5. Brown, H.M., and Cornwall, M.C., 1975, Ionic mechanism of a quasi-stable depolarization in barnacle photoreceptor following a red light, J. Physiol., 248:579.PubMedGoogle Scholar
  6. Brown, H.M., Hagiwara, S., Koike, H., and Meech, R.M., 1970, Membrane properties of a barnacle photoreceptor examined by the voltage-clamp technique, J. Physiol., 208:385.PubMedGoogle Scholar
  7. Brown, J.E., and Mote, M., 1971, Na+ dependence of reversal potentials of light-induced current in Limulus ventral photoreceptors, Biol. Bull. 141:379.Google Scholar
  8. Cosens, D., 1971, Blindness in a Drosophila mutant, J. Insect Physiol., 17:285.CrossRefGoogle Scholar
  9. Cosens, D., and Manning, A., 1969, Abnormal electroretinogram from a Drosophila mutant, Nature 224:285.PubMedCrossRefGoogle Scholar
  10. Dodge, F.A., Jr., Knight, B.W.,and Toyoda, J., 1968, Voltage noise in Limulus visual cells, Science 160:88.PubMedCrossRefGoogle Scholar
  11. Dowling, J.E., and Ripps, H., 1972, Adaptation in skate photoreceptors, J. Gen. Physiol., 60:698.PubMedCrossRefGoogle Scholar
  12. Edwards, H.H., Mueller, T.J., and Morrison, M., 1979, Distribution of transmembrane polypeptides in freeze fracture, Science 203: 1343.PubMedCrossRefGoogle Scholar
  13. Eldred, W.D., and Nolte, J., 1978, Pineal photoreceptors: evidence for a vertebrate visual pigment with two physiologically active states, Vision Res., 18:29.PubMedCrossRefGoogle Scholar
  14. Engbretson, G.A., and Witkovsky, P., 1978, Rod sensitivity and visual pigment concentration in Xenopus, J. Gen. Physiol., 72: 801.PubMedCrossRefGoogle Scholar
  15. Franceschini, N., 1972, Pupil and pseudopupil in the compound eye of Drosophila, in: “Information Processing in the Visual System of Arthropods”, R. Wehner, ed., Springer-Verlag, New York, pp. 75–82.CrossRefGoogle Scholar
  16. Fulpius, B., and Baumann, F., 1969, Effects of sodium, potassium and calcium ions on slow and spike potentials in single photoreceptor cells, J. Gen. Physiol., 53:541.PubMedCrossRefGoogle Scholar
  17. Goldsmith, T.H., Barker, R.J.,and Cohen, C.F., 1964, Sensitivity of visual receptors of carotenoid-depleted flies: a vitamin A deficiency in an invertebrate, Science 146:65.PubMedCrossRefGoogle Scholar
  18. Gorini, L., and Beckwith, J.R., 1966, Suppression, Annu. Rev. Microbiol., 20:401.CrossRefGoogle Scholar
  19. Grabowski, S.R., and Pak, W.L., 1975, Intracellular recordings of rod responses during dark-adaptation, J. Physiol., 247:363PubMedGoogle Scholar
  20. Hamdorf, K., and Rosner, G., 1973, Adaptation and Photoregeneration im Fliegenauge, J. Comp. Physiol., 86:281.CrossRefGoogle Scholar
  21. Harris, W.A.,and Stark, W.S., 1977, Hereditary retinal degeneration in Drosophila melanogaster: a mutant defect associated with the phototransduction process, J. Gen. Physiol., 69:261.PubMedCrossRefGoogle Scholar
  22. Harris, W.A., Stark, W.S.,and Walker, J.A., 1976, Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster, J. Physiol., 256:415.PubMedGoogle Scholar
  23. Harris, W.A., Ready, D.F., Lipson, E.D., and Hudspeth, A.J., and Stark, W.S., 1977, Vitamin A deprivation and Drosophila photo-pigments, Nature 266:648.PubMedCrossRefGoogle Scholar
  24. Heisenberg, M., 1971, Isolation of mutants lacking the optomotor response, Dros. Inf. Serv., 46:68.Google Scholar
  25. Hotta, Y., and Benzer, S., 1970, Genetic dissection of the Drosophila nervous system by means of mosaics, Proc. Natl. Acad. Sci. USA., 67:1156.PubMedCrossRefGoogle Scholar
  26. Kikuchi, R., Naito, K., and Tanaka, I., 1962, Effects of sodium and potassium ions on the electrical activity of single cells in the lateral eye of the horseshoe crab, J. Physiol., 161:319.PubMedGoogle Scholar
  27. Kirschfeld, K., Franceschini, N., and Minke, B., 1977, Evidence for a sensitizing pigment in fly photoreceptors, Nature 269:386.PubMedCrossRefGoogle Scholar
  28. Larrivee, D.C., 1979, A biochemical analysis of the Drosophila rhabdomere and its extracellular environment, Ph.D. thesis, Purdue University.Google Scholar
  29. Lindsley, D.L., and Grell, E.H., 1968, Genetic variations of Drosophila melanogaster, Carnegie Institute of Washington, Washington, D.C.Google Scholar
  30. Lo, M.-V.C., and Pak, W.L., 1978, Desensitization of peripheral photoreceptors shown by blue-induced decrease in transmittance of Drosophila rhabdomeres, Nature 273:772.PubMedCrossRefGoogle Scholar
  31. Millecchia, R., and Mauro, A., 1969, The ventral photoreceptor cells of Limulus II. The basic photoresponse, J. Gen. Physiol., 54: 310.PubMedCrossRefGoogle Scholar
  32. Minke, B., Wu, C.-F., and Pak, W.L., 1975a, Isolation of light-induced response of central retinula cells from the electroretinogram of Drosophila, J. Comp. Physiol., 98:345.CrossRefGoogle Scholar
  33. Minke, B., Wu, C.-F., and Pak, W.L., 1975b, Induction of photoreceptor voltage noise in the dark in Drosophila mutant, Nature, 258: 84CrossRefGoogle Scholar
  34. Morton, R.A.,and Pitt, G.A.J., 1969, Aspects of visual pigment research, in: “Advances in Enzymology, Vol. 32”, F.F. Nord, ed., Wiley and Sons, New York, pp. 97–171.Google Scholar
  35. Ostroy, S.E., 1978, The characteristics of Drosophila rhodopsin in wild type and norpA vision transduction mutants, J. Gen. Physiol., 72:717.PubMedCrossRefGoogle Scholar
  36. Ostroy, S.E., Wilson, M., and Pak, W.L., 1974, Drosophila rhodopsin: photochemistry, extraction and differences in the norpAP 12 phototransduction mutant, Biochem. Biophys. Res. Comm., 59:960.PubMedCrossRefGoogle Scholar
  37. Pak, W.L., 1979, Study of photoreceptor function using Drosophila mutants, in: “Neurogenetics: Genetic Approaches to the Nervous System”,X.O. Breakefield, ed.,Elsevier North Holland, New York.Google Scholar
  38. Pak, W.L., and Lidington, K.J., 1974, Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment, J. Gen. Physiol., 63:740.PubMedCrossRefGoogle Scholar
  39. Pak, W.L., Grossfield, J., and Arnold, K., 1970, Mutants of the visual pathway of Drosophila melanogaster, Nature, 227:518.PubMedCrossRefGoogle Scholar
  40. Pak, W.L., Ostroy, S.E., Deland, M.C., and Wu, C.-F., 1976, Photoreceptor mutant of Drosophila: Is protein involved in intermediate steps of phototransduction?, Science, 194:956.CrossRefGoogle Scholar
  41. Paulsen, R., and Schwemer, J., 1979, Vitamin A deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes, Biochim. Biophys. Acta 557:385.PubMedCrossRefGoogle Scholar
  42. Rushton, W.A.H., 1961, The intensity factor in vision, in: “Light and Life”, W.D. McElroy and B. Glass, eds., Johns Hopkins Press, Baltimore, pp. 706–723.Google Scholar
  43. Schinz, R.H., Lo, M.-V.C., Larrivee, D.C., and Pak, W.L., 1980, Freeze-fracture study of insect photoreceptor membrane. II. Drosophila mutations affecting the membrane microstructure, Submitted to J. Cell Biol. Google Scholar
  44. Stark, W.S., Ivanyshyn, A.M., and Greenberg, R.M., 1977, Sensitivity and photopigments of Rl-6, a two peaked photoreceptor in Dro-sophila, Calliphora and Musca, J. Comp. Physiol., 121:289.CrossRefGoogle Scholar
  45. Stavenga, D.G., Zantema, A., and Kuiper, J.W., 1973, Rhodopsin processes and the function of the pupil mechanism in flies, in: “Biochemistry and Physiology of Visual Pigments”, H. Langer, ed., Springer-Verlag, New York, pp. 175–180.CrossRefGoogle Scholar
  46. Wald, G., 1968, Molecular basis of visual excitation, Nature, 219: 800.PubMedCrossRefGoogle Scholar
  47. Wilcox, M.J., 1980, Ionic mechanism of the receptor potential in the photoreceptors of wild-type and mutant Drosophila, Ph.D. thesis, Purdue University.Google Scholar
  48. Wong, F., 1977, Mechanisms of the phototransduction process in in- vertebrate photoreceptors, Ph.D. thesis, Rockefeller UniversityGoogle Scholar
  49. Wu, C.-F., and Pak, W.L., 1975, Quantal basis of photoreceptor spectral sensitivity of Drosophila melanogaster, J. Gen. Physiol., 66:149.PubMedCrossRefGoogle Scholar
  50. Yu, J., and Branton, D., 1976, Reconstitution of intramembrane particles in erythrocyte band 3-lipid recombinants: effects of spectrin-actin association, Proc. Natl. Acad. Sci. U.S.A., 73:3891PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • W. L. Pak
    • 1
  • S. K. Conrad
    • 1
  • N. E. Kremer
    • 1
  • D. C. Larrivee
    • 1
  • R. H. Schinz
    • 1
  • F. Wong
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations