Investigation of Optically Dense Systems by Internal Reflection Spectroscopy: Experimental Considerations

  • James S. Mattson
  • Harry B. MarkJr.
  • Walter J. WeberJr.
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 8)


Many materials of importance in natural waters and waste-water systems—e.g., sediments, suspensions, and precipitates—are optically opaque. The application of transmission spectroscopy for purposes of analysis and identification of such materials is therefore usually precluded. For cases in which conventional transmission spectroscopy is not feasible because of scattering effects and/or extensive attenuation of incident light, the technique of internal-reflectance spectroscopy (IRS) often provides a means for obtaining characteristic spectral data. Several specific examples are presented to indicate that IRS provides high contrast spectra comparable to the best transmission spectra for “clean” systems, provided appropriate IRS geometry, components, and techniques are selected. Examples include active carbons and carbon blacks, marine sediments, freshwater sediments, and extremely turbid suspensions. Experimental considerations involved in the application of IRS to such systems are discussed. Interpretation of IRS spectra, and the differences to be expected between IRS and transmission spectra are also considered.


Carbon Black Transmission Spectrum Diatomaceous Earth Internal Reflection Total Internal Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. Harrick, Phys. Rev. Letters 4, 224 (1960).CrossRefGoogle Scholar
  2. 2.
    J. Fahrenfort, Spectrochim. Acta 17, 698 (1961).CrossRefGoogle Scholar
  3. 3.
    W. N. Hansen, Anal. Chem. 35, 765 (1963).CrossRefGoogle Scholar
  4. 4.
    W. N. Hansen and J. A. Horton, Anal. Chem. 36, 783 (1964).CrossRefGoogle Scholar
  5. 5.
    W. N. Hansen, Spectrochim. Acta 21, 815 (1965).CrossRefGoogle Scholar
  6. 6.
    N. J. Harrick, Internal Reflection Spectroscopy, Interscience, New York (1967).Google Scholar
  7. 7.
    J. S. Mattson and H. B. Mark, Jr., Environ. Sci. Technol. 3, 161 (1969).CrossRefGoogle Scholar
  8. 8.
    J. S. Mattson, H. B. Mark, Jr., W. J. Weber, Jr., Anal. Chem. 41, 355 (1969).CrossRefGoogle Scholar
  9. 9.
    J. S. Mattson and H. B. Mark, Jr., J. Colloid Interface Sci. 31, 131 (1969).CrossRefGoogle Scholar
  10. 10.
    W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy, Interscience, New York (1966).Google Scholar
  11. 11.
    W. N. Hansen, J. Opt. Soc. Amer. 58, 380 (1968).CrossRefGoogle Scholar
  12. 12.
    J. S. Mattson, H. B. Mark, Jr., H. C. MacDonald, Jr., and C. E. Schutt, Interaction of the Evanescent Field in IRS with Particles (in preparation).Google Scholar
  13. 13.
    D. L. Fried and J.D. Cloud, J. Opt. Soc. Amer. 56, 1667 (1966).CrossRefGoogle Scholar
  14. 14.
    D. L. Fried and J. B. Seidman, J. Opt. Soc. Amer. 57, 181 (1967); and D. L. Fried, G. E. Meyers, and M. P. Keister, J. Opt. Soc. Amer. 57, 787 (1967).Google Scholar
  15. 15.
    R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Rhysics, Vol. II, Section 32, Addison-Wesley, Reading, Mass. (1964).Google Scholar
  16. 16.
    P. J. Foster and C. R. Howarth, Carbon 6, 719 (1968).CrossRefGoogle Scholar
  17. 17.
    M. Born and E. Wolf, Principles of Optics, 3rd Ed.,Pergamon Press, Oxford, England (1965), p. 613.Google Scholar
  18. 18.
    J. S. Mattson, H. B. Mark, Jr., M. D. Malbin, W. J. Weber, Jr., and J. C. Crittenden, J. Coll. Interface Sci., 31, 116 (1969).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1970

Authors and Affiliations

  • James S. Mattson
    • 1
  • Harry B. MarkJr.
    • 1
  • Walter J. WeberJr.
    • 1
  1. 1.The University of MichiganAnn ArborUSA

Personalised recommendations