The Use of Mössbauer Spectroscopy on the Lanthanide Elements and Their Compounds

  • A. F. Clifford
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 8)


Useful Mössbauer spectroscopy has been developed in all the lanthanides from samarium to ytterbium except for holmium. Small quadrupole coupling and the complicated fine structure have hampered investigation of many of these elements, but the case of observing magnetic hyperfine splitting has made the investigation of a variety of magnetic phenomena quite feasible. Ferromagnetic, antiferromagnetic, ferrimagnetic, and paramagnetic phenomena have been studied in dysprosium and samarium. Paramagnetic relaxation has been studied in DyFeO3 and Dy2O3. A magnetic structure was found in thulium metal incommensurate with the crystal structure. A “pseudoquadrupole shift” due to small separation of the lowest electronic states is found in thulium compounds. The effects of high pressure and the nature of chelates on both absorption efficiency and isomer shift has been studied in europium compounds. The problem of line broadening observed in most work with the lanthanides has been studied in the author’s laboratory. Progress toward more nearly monochromatic sources will be discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Geiger, Nucl. Phys. 68, 352 (1965).CrossRefGoogle Scholar
  2. 2.
    U. Atzmony, E. R. Bauminger, and S. Ofer, Nucl. Phys. 89, 433 (1966).CrossRefGoogle Scholar
  3. 3.
    A. J. F. Boyle and G. J. Perlow, 5th Mössbauer Symp., New York, Feb. 12, 1969.Google Scholar
  4. 4.
    J. Eck, Y. K. Lee, E. T. Ritter, R. R. Stevens, Jr., and J. C. Walker, Phys. Rev. Letters 17, 120 (1966).CrossRefGoogle Scholar
  5. 5.
    G. M. Kalvius and J. K. Tison, Phys. Rev. 152, 829 (1966).CrossRefGoogle Scholar
  6. 6.
    E. Münck, D. Quitman, and S. Hüfner, Phys. Letters 24B, 392 (1967).CrossRefGoogle Scholar
  7. 7.
    G. J. Bowden, D. St. P. Bunbury, and J. M. Williams, Proc. Phys. Soc. 91, 612 (1967).CrossRefGoogle Scholar
  8. 8.
    S. Ofer, E. Segal, I. Nowik, E. Bauminger, L. Grodzins, A. J. Freeman, and M. Schieber, Phys. Rev., 137 A627 (1965).CrossRefGoogle Scholar
  9. 9.
    I. Nowik and H. J. Williams, Phys. Letters 20, 154 (1966).CrossRefGoogle Scholar
  10. 10.
    I. Nowik and H. H. Wickman, Phys. Rev. Letters 17, 949 (1966).CrossRefGoogle Scholar
  11. 11.
    I. Nowik, Phys. Letters 24A, 88 (1967).CrossRefGoogle Scholar
  12. 12.
    K. A. Wickersheim and R. L. White, Phys. Rev. Letters 8, 483 (1962).CrossRefGoogle Scholar
  13. 13.
    A. J. Sievers and M. Tinkham, Phys. Rev. 129, 1995 (1963).CrossRefGoogle Scholar
  14. 14.
    M. J. Clauser, E. Kankeleit, and R. L. Mössbauer, Phys. Rev. Letters 17, 5 (1966).CrossRefGoogle Scholar
  15. 15.
    H. A. Bethe, Ann. Physik 3, 133 (1929).CrossRefGoogle Scholar
  16. 16.
    D. L. Uhrich, D. J. Genin, and R. G. Barnes, Phys. Letters 24A, 338 (1967).CrossRefGoogle Scholar
  17. 17.
    H. H. Wickman and I. Nowik, Phys. Rev. 142, 115 (1966).CrossRefGoogle Scholar
  18. 18.
    R. G. Barnes, R. L. Mössbauer, E. Kankeleit, and J. M. Poindexter, Phys. Rev. 136, A175, (1964).CrossRefGoogle Scholar
  19. 19.
    G. Jura, UCRL-11317.Google Scholar
  20. 20.
    T. P. Abeles and W. G. Bos, J. Phys. Chem. Solids 30, 2159 (1969).CrossRefGoogle Scholar
  21. 21.
    F. A. Deeney, J. A. Delaney, and V. P. Ruddy, J. Inorg. Nucl. Chem. 30, 1175 (1968).CrossRefGoogle Scholar
  22. 22.
    S. Ofer and E. Segal, Phys. Rev. 141, 448 (1966)CrossRefGoogle Scholar
  23. J. Nowik, S. Ofer, and J. H. Wernick, Phys. Letters, 20, 232 (1966).CrossRefGoogle Scholar
  24. 23.
    A. F. Clifford, Advances in Chemistry Series, No. 68, The Mössbauer Effect and Its Applications in Chemistry, American Chemical Society, (1967).Google Scholar
  25. 24.
    S. Hüfner, P. Kienle, D. Quitman, and P. Brix Z. Physik 187, 67 (1965).CrossRefGoogle Scholar
  26. 25.
    F. A. Deeney, J. A. Delaney, and V. P. Ruddy, Phys. Letters, 25A, 370 (1967).CrossRefGoogle Scholar
  27. 26.
    M. Cordey-Hayes. J. Inorg. Nucl. Chem. 26, 915 (1964);CrossRefGoogle Scholar
  28. D. A. Shirley, Rev. Mod. Phys. 36,339 (1964); and others.CrossRefGoogle Scholar
  29. 27.
    A. F. Clifford, J. Am. Chem. Soc. 79, 5404 (1957)CrossRefGoogle Scholar
  30. A. F. Clifford, J. Phys. Chem. 63, 1227 (1959).CrossRefGoogle Scholar
  31. 28.
    A. J. F. Boyle and G. J. Perlow, Bull. Am. Phys. Soc. 10, 482 (1965).Google Scholar
  32. 29.
    I. Nowik and S. Ofer, Phys. Rev. 132, 241 (1963).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1970

Authors and Affiliations

  • A. F. Clifford
    • 1
  1. 1.Virginia Polytechnic InstituteBlacksburgUSA

Personalised recommendations