Advertisement

Rheology of Concentrated Suspensions

  • Th. F. Tadros

Abstract

The rheology of concentrated suspensions, namely their viscoelasticity, is determined by the balance of three forces; Brownian diffusion, hydrodynamic interaction and interparticle forces. These three contributions depend on the volume fraction of the suspension, the particle size and interparticle forces. Thus, various viscoelastic responses may be obtained depending on the time scale of the experiment and the structure of the system. If the time scale of the experiment is shorter than the relaxation time of the system, a predominantly elastic response is produced. This means that the system has a relatively high Deborah number De,
$${{\text{D}}_{\text{e}}}={{\text{t}}_{\text{r}}}\text{/}{{\text{t}}_{\text{e}}}$$
(1)
where tr is the relaxation time of the system and te the time scale of the rheological experiment.

Keywords

Shear Rate Strain Amplitude Hydrodynamic Interaction Concentrate Suspension Deborah Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.M. Krieger, Advances Colloid Interface Sci. 3, I11 (1972).CrossRefGoogle Scholar
  2. 2.
    I.M. Krieger, I.M., Dougherty, M. Trans. Soc. Rheol. 3, 137 (1959)CrossRefGoogle Scholar
  3. 3.
    G.K. Bachelor, J. Fluid Mech. 83, 97 (1977).CrossRefGoogle Scholar
  4. 4.
    A. Hopkinson and Th.F. Tadros, to be published.Google Scholar
  5. 5.
    C. Prestidge and Th.F. Tadros, J. Colloid Interface Sci, 124, 660 (1988)CrossRefGoogle Scholar
  6. 6.
    A. Hopkinson and Th.F. Tadros, to be published.Google Scholar
  7. 7.
    T.H. Den Boomgaard, T.A. King, Th.F. Tadros, H. Tang and B. Vincent, J. Colloid Interface Sci. 66, 68 (1978).CrossRefGoogle Scholar
  8. 8.
    W.C. Russel, J. Rheol. 24, 987 (1980).CrossRefGoogle Scholar
  9. 9.
    J. Mewis, J. Non-Newtonian Fluid Mechanics, 6, 1 (1979).CrossRefGoogle Scholar
  10. 10.
    C.F. Goodeve, Trans. Faraday Soc. 35, 342 (1939).CrossRefGoogle Scholar
  11. 11.
    T. Gillespie, J. Colloid Sci. 15, 219 (1960).CrossRefGoogle Scholar
  12. 12.
    B.A. Firth and R.J. Hunter, J. Colloid Interface Sci., 57, 248 (1976); 57, 257 (1976); 57, 266 (1957).Google Scholar
  13. 13.
    A. Hopkinson and Th.F. Tadros, to be published.Google Scholar
  14. 14.
    C. Prestidge and Th.F. Tadros, Colloids and Surfaces 31, 325 (1988).Google Scholar
  15. 15.
    P.F. Luckham, B. Vincent and Th.F. Tadros, Colloids and Surfaces, 6, 101 (1983).CrossRefGoogle Scholar
  16. 16.
    Asakuras and F. Oosawa, J. Polym. Sci. 33, 245 (1958).Google Scholar
  17. 17.
    A. Hopkinson and Th.F. Tadros, to be published.Google Scholar
  18. 18.
    A. Hopkinson and Th.F. Tadros, to be published.Google Scholar
  19. 19.
    J.D.F. Ramsay, J. Colloid Interface Sci. 109, 441 (1986).CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishing Co., Inc. 1990

Authors and Affiliations

  • Th. F. Tadros
    • 1
  1. 1.ICI Agrochemicals, Jealotts Hill Research StationBracknell, BerksUK

Personalised recommendations