Biometallurgy for Manganese and Copper Ores

  • L. Toro
  • C. Abbruzzese
  • F. Vegliò
  • B. Paponetti


The paper discusses the biotreatment of Italian ores of potential commercial interest, using oxidizing and reducing microorganisms in mixed and pure cultures. The study focused on copper and manganese ores.

Bioleaching tests were carried out in Erlenmeyer flasks, a L.K.B. modified microfermenter and a newly designed reactor. In particular the development during the time of the chalcopyrite bioleaching of catalyzed by Thiobacillus ferrooxidans is proposed. The main biochemical and chemical reactions concerned in the production of soluble and insoluble species were investigated during the culture growth particularly the time when the principal reactions begin and their duration.

Experimental runs were also performed using urea in place of ammonium sulphate.

Manganese bioleaching was carried out utilizing various microrganisms coming from the natural habitat; interesting results as regards rates and yields were obtained by mixed cultures. Tests of some strains isolated from these cultures were carried out.


Pilot Plant Manganese Dioxide Manganese Nodule Thiobacillus Ferrooxidans Copper Solubilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.N. Groudev, Continuous bacterial leaching of copper sulphide concentrates, in Fundamental and Applied Biohydrometallurgy, R. W. Lawrence, R.M.R. Branion, and H.G. Ebner, Elsevier, pp. 43–50, 1986.Google Scholar
  2. 2.
    P. Bos, T.F. Huber, C.H. Kos, C. Ras and J,C. Kuenen, A dutch feasibility study on microbial coal desulphurization, in Fundamental and Applied Biohydrometallurgy, R. W. Lawrence, R.M.R.Branion, and H.G. Ebner, Elsevier, pp. 129–150, 1986.Google Scholar
  3. 3.
    P.C. Miller, R. Huberts, and E. Livesey-Goldbatt, The semicontinuous bacterial agitated leaching of nickel disulphide material, in Fundamental and Applied Biohydrometallurgy, R.W. Lawrence, R.M.R. Branion, and H. G. Ebner, Elsevier, pp. 23–42, 1986.Google Scholar
  4. 4.
    G.I. Karavaiko, L.K. Chuchalin, T.A. Pivovarova, Microbiological leaching of metals from arsenopyrite containing concentrates,in Fundamental and Applied Biohydrometallurgy, R.W. Lawrence, R.M.R. Branion, and H. G. Ebner, Elsevier, pp. 115–127, 1986.Google Scholar
  5. 5.
    S. Acevedo and G. Aroca, “Studies on the agitation and power characteristics of mineral slurries”, in Fundamental and Applied Biohydrometallurgy, R. W. Lawrence, R.M.R. Branion, and H. G. Ebner, Elsevier, pp. 255–262, 1986.Google Scholar
  6. 6.
    L. Toro, G. Alberti, N. Orsi and M. C. Annesini, Kinetic Analysis of the Growth of Thiobacillus ferrooxidans in a Synthetic Medium: a Preliminary Study on Zinc Sulphide Leaching in a Batch Culture, in:Google Scholar
  7. G. Rossi and A.E.Torma, (Eds.), “Recent Progress in Biohydrometallurgy”, A.S.M., Cagliari, pp. 317–324, 1983.Google Scholar
  8. 7.
    A. Bruynesteyn, R. W. Lawrence, A. Vizsolyi, An elemental sulphur producing bioydrometallurgical process fot treating sulphide concentrates“, Progress in Biohydrometallurgy, pp. 151–168, 1983.Google Scholar
  9. 8.
    H. Kandemir, “Fate of sulphides in bacterial oxidation of iron sulphides minerals”, Progress in Biohydrometallurgy pp. 291–315, 1983.Google Scholar
  10. 9.
    K.C. Trivedi, Microbial Leaching of Copper and Nickel Sulphides, Ph. D. dissertation, Faculty of the Graduate University of Minnesota, 1974.Google Scholar
  11. 10.
    A. Pinches, F.O. Al-Jaid, D.J.A. Williams and B. Atkinson, “Leaching of chalcopyrite concentrates with Thiobacillus ferrooxidans in batch culture”, Hydrometallurgy, vol. 2 pp. 87–103, 1976.CrossRefGoogle Scholar
  12. 11.
    A. Lepidi, L. Toro, B. Paponetti and S. Di Cesare, “Urease of Thiobacillus Ferrooxidans and urea influence on chalcopyrite bioleaching”, International Symposium of Warwick, July pp. 319–325, 1987.Google Scholar
  13. 12.
    D.P. Kelly & C.A. Jones.“Factors affecting metabolism and ferrous iron oxidation in suspensions and batch cultures of Thiobacillus ferrooxidans, in ”Metallurgical Applications of Bacterial Leaching and Related Microbial Phenomena“, pp. 20–43, 1978.Google Scholar
  14. 13.
    C. Abruzzese.“Valorizzazione dei minerali di Manganese Dell’Alto Lazio, mediante lisciviazione e recupero del metallo”, 1986.Google Scholar
  15. 14.
    B. Paponetti, L. Toro, C. Abruzzese, A. Marabini and M. Y. Duarte, Recovery of Mn + from concentrates of Mn0 by means Aspergillus niger. Role of metabolic intermediates in the extractive process, 118th annual meeting of AIME, Las Vegas, February 27–March 2, 5, 33–37, 1989.Google Scholar
  16. 15.
    A. Okuwaki, Treatment of manganese nodule II, Kagaku Kogyo, 30 (2), pp. 1462–1482, 1977.Google Scholar
  17. 16.
    Kazutami Imai. On the mechanism of bacterial leaching, in Metalllurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, pp 275–294, 1978.Google Scholar
  18. 17.
    J. Michael Hart and C. John Madgwick, Biodegradation of manganese dioxide tailings, Bull. Proc. Australas. Inst. Metall., Vol. 291, No 3, pp. 61–64, 1986.Google Scholar
  19. 18.
    E.M. Bierhaus, J. Perez, A.E. Torma and G. Rossi, A comparison of bacterial leachability of chalcopyrite concentrates from different origins, in Recent Progress in Biohydrometallurgy, Ed. G. Rossi and A.E. Torma, A.S.M. pp. 127–150, 1986.Google Scholar
  20. 19.
    M.P. Silverman, and D.G.L. Lundgren, Studies on the chemoautotrophic iron bacterium ferrobacillus ferrooxidans, J. Bacteriology, Vol. 77, pp. 642–647, 1959.Google Scholar
  21. 20.
    L. Toro, S. Di Cesare, B. Paponetti and A. Lepidi, Biochemical and chemical Events in Copper Solubilization from a Chalcopyrite Concentra to by Thiobacillus ferrooxidans in Batch Cultures,International Journal of Mineral Processing, pp. 1–10, 1989.Google Scholar
  22. 21.
    A.E. Torma,“Biohydrometallurgy as an Emerging Technology and Bioengineering Symposium, n. 16, 149–63, 1986.Google Scholar
  23. 22.
    P.R. Norris and D.P. Kelly “Toxic metals in leaching systems”, Ed. Murr E.,Torma A. and Brierly A., pp. 83–101, 1978.Google Scholar
  24. 23.
    S.B. Yunker and J.M. Radovich, Enhancement of Growth and ferrous Iron Oxidation Rates of Thiobacillus by Electrochemical Reduction of Ferric iron, Biotechnology and Bioengineering, V. XXVIII, pp. 1867–1875, 1986.CrossRefGoogle Scholar
  25. 24.
    C.A. Schnaitman, M.S. Korzynszy and D.G. Lundgren,“Kinetic studies on iron oxidation by whole cells of Ferrobacillus Ferrooxidans”, J. Bacteriol. Vol. 99, pp. 552–557, 1969.Google Scholar
  26. 25.
    J. Frizt and S. Yamamura “Rapid microtitration of sulphate” Anal.Chem., Vol., 23 pp. 1461–1465, 1955.Google Scholar
  27. 26.
    D. Barham & P. Trinder, Analyst, 97, pp. 142, 1972.CrossRefGoogle Scholar
  28. 27.
    A. Vaschetti, Procedimento per la precipitazione del ferro da soluzioni di solfato di zinco, Brevetto n. 946484, 1971.Google Scholar
  29. 28.
    H.G. Schlegel, and H. Kaltwasser, Urease, methods of enzymatic analysis. Bergmeyer H.U. Ed.,pp. 1081–1085, 1974.Google Scholar

Copyright information

© Elsevier Science Publishing Co., Inc. 1990

Authors and Affiliations

  • L. Toro
    • 1
  • C. Abbruzzese
    • 2
  • F. Vegliò
    • 1
  • B. Paponetti
    • 1
  1. 1.Dipartimento di ChimicaIngegneria chimica e Materiali, University of L’AquilaMonteluco di RoioItaly
  2. 2.Istituto per il Trattamento dei Minerali (CNR)RomeItaly

Personalised recommendations