Split Flotation of Calcite from Wollastonite and Microcline — The Calcite Rich Wollastonite Ore of Northern Sweden

  • R. Sivamohan
  • Huang Fugen


A detailed laboratory research program to find possible ways to selectively float the above cited complexly and finely interlayered ore, was carried out. Entrainment experiments of different size fractions of this ore showed that it could be an important contributor to the flotation of slime. Split flotation experiments have shown that substantial improvements in selectivity as well as a >25% reduction in collector consumption are possible compared to normal flotation. Starvation flotation gives flotation concentrates of narrow size distributions. Reverse flotation of calcite enables a simple flotation circuit because of the availability of the calcite specific collectors, namely, LF AK100 and Berol 860. The experiments carried out on mixtures of coarser size fractions with the −10µm fraction in different proportions have shown that the coarser particles, in the presence of ultrafine particles, do not float as fast as they float in the absence of such particles.


Size Fraction Ultrafine Particle Magnetic Concentration Column Flotation Reverse Flotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Reay and G.A. Ratcliff, Canadian J. Chemical Eng., 51, 178–185 (1973).CrossRefGoogle Scholar
  2. 2.
    G.L. Collins and G.J. Jameson, Chemical Eng. Sci. 31, 985–991 (1976).CrossRefGoogle Scholar
  3. 3.
    G.J. Jameson, S. Nam and M. Moo Young, Minerals Sci. Engng. 9, 103–118 (1977).Google Scholar
  4. 4.
    R.J. Gochin, IMM(U.K) Trans. 92, C52–58 (1983).Google Scholar
  5. 5.
    Z.W. Jiang and P.N. Holtham, IMM(U.K) Trans., 95, C187–194 (1986).Google Scholar
  6. 6.
    R.H. Yoon and G.H. Luttrell, Coal Preparation 2, 179–192 (1986).CrossRefGoogle Scholar
  7. 7.
    J.P. Bisshop and M.E. White, IMM(U.K) Trans., C191–194 (1976).Google Scholar
  8. 8.
    K.V.S. Sastry (Editor), Column Flotation’88 - Proc. Inter. Sym. on Column Flotation, (SME, USA 1988) 315 pp.Google Scholar
  9. 9.
    L.J. Warren, J. Colloid Interface Sci. 50, 307–318 (1975).CrossRefGoogle Scholar
  10. 10.
    L.J. Warren, IMM(U.K) Trans. 84, C99–104 (1975).Google Scholar
  11. 11.
    P.T.L. Koh and L.J. Warren, IMM(U.K) Trans., 86, C97–100 (1977).Google Scholar
  12. 12.
    P.T.L. Koh and L.J. Warren, in: J. Laskowski (Ed.), Proc. 13th. Int Miner. Process. Congr., ( Elsevier, Amsterdam 1979 ) 1, 294–315.Google Scholar
  13. 13.
    R. Sivamohan and J.M. Cases, Int. J. Miner. Process., (1989), in press.Google Scholar
  14. 14.
    F. Huang and R. Sivamohan, Minerals Engineering, U.K., (1989), in press.Google Scholar
  15. 15.
    F. Huang and R. Sivamohan, in: G.S.Dobby (Ed.) Proc. Int. Symp. on the Processing of Complex Ores, CIM, Canada, ( Pergamon Press 1989 ).Google Scholar
  16. 16.
    R. Sivamohan and F. Huang, Miner. & Metal. Process., May, 69–72 (1989).Google Scholar
  17. 17.
    W.J. Trahar, Int. J. Miner. Process. 8, 289–327 (1981).CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishing Co., Inc. 1990

Authors and Affiliations

  • R. Sivamohan
    • 1
  • Huang Fugen
    • 1
  1. 1.Division of Mineral ProcessingTechnical University of LuleåLuleåSweden

Personalised recommendations