Skip to main content

Selective Separation of Fine Particles at a Charged Solid/Liquid Interface

  • Chapter
Advances in Fine Particles Processing
  • 164 Accesses

Abstract

This paper considers recent developments in theoretical models which may be used to simulate particle capture processes and the feasibility of separating colloidal species according to their surface charge, by selective and reversible adsorption onto a collector surface. Selectivity is achieved through control of the electrochemical potential of the collector. The principios of controlled-collector-potential chromatographic separation (CCPCS) methods are illustrated for the separation of alumina and titania particles (200 nm radius) at a macroscopic platinum (oxide) collector in aqueous electrolytes for a flow-through sandwich-cell separation module. For this ceramic system separation via the secondary minimum interaction energy level is not possible, however, selective separation based on differences in the DLVO energy barrier using potential control seems feasible. Practical limitations on the selection of appropriate approximations to describe particle-collector interaction and the role of heterogeneities in particle/charge properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.K. Marshall and J.A. Kitchener, The Deposition of Colloidal Particles on Smooth Solids, J. Colloid Interface Sci., 22, 342–351, (1966).

    Article  Google Scholar 

  2. X. Jia and R.A. Williams, Particle Deposition at a Charged Solid/Liquid Interface: Review Article, Chem. Eng. Commun.,(in press).

    Google Scholar 

  3. Z. Adamczyk, T. Drabos, J. Czarnecki and T.G.M. van der Ven, Particle Transfer to Solid Surfaces, Adv. Colloid Interface Sci, 19, 183–252, (1983).

    Article  Google Scholar 

  4. J.P. Hsu and S.S. Sun, A Probabilistic Analysis of the Adsorption of Particles on Solid Surfaces, J. Colloid Interface Sci., 122, 73–77, (1988).

    Article  Google Scholar 

  5. B. Dahneke, Kinetic Theory of the Escape of Particles From Surfaces, J. Colloid Interface Sci., 50, 89–107, (1975).

    Article  Google Scholar 

  6. E. Ruckenstein and D.C. Prieve, Adsorption and Desorption of Particles and Their Chromatographic Separations, A.I.Ch.E.J., 22, 276–283, (1976).

    Article  Google Scholar 

  7. E. Barouch, T.H. Wright, and E. Matijevic, Kinetics of Particle Detachment, J. Colloid Interface Sci., 118, 473–481, (1976).

    Google Scholar 

  8. E. Barouch, E. Matijevic, T.A. Ring and J.M. Finlan, Heterocoagulation, J. Colloid Interface Sci., 67, 1–9, (1978).

    Article  Google Scholar 

  9. B.D. Bowen and J.N. Epstein, Fine Particle Deposition in Smooth Parallel— Plate Channels, J. Colloid Interface Sci., 72, 81–97, (1979).

    Article  Google Scholar 

  10. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, ( Clarendon Press, Oxford, 1987 ).

    Google Scholar 

  11. D. Gupta and M.H. Peters, On the Angular Dependence of Aerosol Diffusional Deposition onto Spheres, J. Colloid Interface Sci., 110, 286–291, (1986).

    Article  Google Scholar 

  12. T.J. Murphy and J.L. Aguirre, Brownian Motion of N Interacting Particles, J. Chem. Phys., 57, 2098–2104, (1972).

    Article  Google Scholar 

  13. D.C. Prieve and M.M.J. Lin, Adsorption of Brownian Hydrosols onto a Rotating Disc Aided by a Uniform Applied Force, J. Colloid Interface Sci., 76, 32–47, (1980).

    Article  Google Scholar 

  14. Z. Adamczyk and T.G.M. van der Veil, Kinetics of Particle Accumulations at Collector Surfaces, J. Colloid Interface Sci., 97, 68–90, (1984).

    Article  Google Scholar 

  15. J. Czarneki and van der Waals, Attraction Energy Between Sphere and Half—Space, J. Colloid Interface Sci., 72, 361–362, (1979).

    Article  Google Scholar 

  16. J. Gregory, Approximate Expressions for Retarded van der Waals Interaction, J. Colloid Interface Sei., 83, 138–145, (1981).

    Article  Google Scholar 

  17. X. Jia, M.Sc. Dissertation, University of Manchester, (1988).

    Google Scholar 

  18. G.R. Wiese and T.W. Healy, Ileterocoagulation in Mixed Ti02—Al203 Dispersions, J. Colloid Interface Sci., 51, 458–467, (1975).

    Article  Google Scholar 

  19. R.A. Williams and X. Jia, Simulation of Particle Deposition at a Charged Solid/Liquid Interface, (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishing Co., Inc.

About this chapter

Cite this chapter

Williams, R.A., Jia, X. (1990). Selective Separation of Fine Particles at a Charged Solid/Liquid Interface. In: Hanna, J., Attia, Y.A. (eds) Advances in Fine Particles Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7959-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7959-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7961-4

  • Online ISBN: 978-1-4684-7959-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics