Effects of Platinum Coordination Complexes on Mutants of Escherichia coli Defective in DNA Repair and Genetic Recombination

  • Robert Alazard
  • Maryse Germanier
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 40)


The effect of three platinum coordination complexes on wild type and repair deficient mutant of Escherichia coli has been investigated. The antitumor drug cis-platinum (II) diamminodichloride (cis-PDD) produces an inhibition of DNA synthesis and reduces the viability of excision repair and recombination defective mutants. The trans isomer (trans-PDD) has less effect than cis-PDD on all of these mutants while [Pt(dien)C1]C1 has no effect. Incorporation of radioactive precursors under non-replicating conditions and density gradient centrifugation analysis of DNA indicate that repair synthesis occurred after treatment of wild type cells with cis-PDD or trans-PDD.


Excision Repair Platinum Compound Repair Synthesis Repair Replication Platinum Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Rosenberg, L. Van Camp, J.E. Trosko and V.H. Mansour, Platinum compounds: a new class of potent antitumor agents, Nature 222: 385 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    D.J. Beck and R.R. Brubaker, Mutagenic properties of cis-Platinum diaminodichloride in Escherichia coli, Mut. Res. 27: 181 (1975).Google Scholar
  3. 3.
    B. Rosenberg, E. Renshaw, L. Van Camp, J. Hartwich and J. Drobnik, Platinum induced filamentous growth in Escherichia coli, J. Bacteriol. 93: 716 (1967).PubMedGoogle Scholar
  4. 4.
    D. Beck and R.R. Brubaker, Effect of cis-Platinum diaminodichloride on wild type and DNA repair deficient mutants of Escherichia coli, J. Bacteriol. 116: 1247 (1973).PubMedGoogle Scholar
  5. 5.
    J.J. Roberts and A.J. Thompson, The mechanism of action of antitumor platinum compounds, in Prog. Nucl. Acid Res. and Mol. Biol. 21:71 (1979).Google Scholar
  6. 6.
    J.P. Macquet and J.L. Butour, Modifications of the DNA secondary structure upon platinum binding: a proposed model, Biochimie, 60: 901 (1978).CrossRefGoogle Scholar
  7. 7.
    P. Howard-Flanders and R.P. Boyce, DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes, Radiat. Res. Suppl. 6: 156 (1966).CrossRefGoogle Scholar
  8. 8.
    M. Ikenaga, H. Ichikawa-Ryo and S. Kondo, The major cause of inactivation and mutation by 4-nitroquinoline 1-oxide in Escherichia coli: excisable 4 NQO-purine adducts, J. Mol. Biol. 92: 341 (1975).PubMedCrossRefGoogle Scholar
  9. 9.
    S.C. Cole, D. Levitan and R.R. Sinder, Removal of psoralen interstrand crosslink from DNA of Escherichia coli: Mechanism and Genetic control, J. Mol. Biol. 103: 39 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    P.C. Hanawalt and P.K. Cooper, Determination of repair replication in vivo in Methods in Enzymology, 21: 221 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Robert Alazard
    • 1
  • Maryse Germanier
    • 1
  1. 1.Laboratoire de Pharmacologie et de ToxicologieFondamentales du CNRSToulouse CédexFrance

Personalised recommendations