Programmed Death of Escherichia coli after UV Radiation

  • Željko Trgovčević
  • Erika Salaj-Šmic
  • Mirjana Petranović
  • Drago Petranović
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 40)


It is known that unicellular organisms are able to perpetuate themselves indefinitely. Under unfavorable conditions, however, they can meet their biological end-point. This end-point, i.e. cell death, is usually thought to be the result of passive “wearing out” processes. Senescence and death of human fibroblasts in vitro 1‚2 and even biological aging of higher organisms are also ascribed to such processes. It is assumed that errors in protein and DNA synthesis passively accumulate to the point where, due to impaired cell functions, death ensues 3‚4. In marked contrast to this,our recent results 5‚6 indicate that death of Escherichia coli cells after UV radiation might be an active “self-destruct” program.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Hayflick and P.S. Moorhead, The serial cultivation of human diploid cell strains, Exp. Cell Res. 25: 585 (1961).CrossRefGoogle Scholar
  2. 2.
    L. Hayflick, The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res. 37: 614 (1965).CrossRefGoogle Scholar
  3. 3.
    L.E. Orgel, Ageing of clones of mammalian cells, Nature 243: 441 (1973).CrossRefGoogle Scholar
  4. 4.
    R. Holliday and G.M. Tarrant, Altered enzymes in ageing human fibroblasts, Nature 238: 26 (1972).CrossRefGoogle Scholar
  5. 5.
    M. Petranovié, E. Salaj-âmic, D. Petranovié, and Z. Trgovicevié, Inactivation of prophage in uv-irradiated Escherichia coli: Dependence on recA gene activity, J. Bact. 140: 848 (1979).Google Scholar
  6. 6.
    I. Trgovicevié, M. Petranovié, E. Salaj-tmic, D. Petranovié, and H. Qerimi, The cascade of “SOS” events, in: Progress in Environmental Mutagenesis, M. Alacevié ed., Elsevier/North Holland, Amsterdam (1980).Google Scholar
  7. 7.
    W. Hayes, The Genetics of Bacteria and their Viruses, Blackwell, Oxford (1968).Google Scholar
  8. 8.
    R. Sussman and F. Jacob, Sur un système de répression thermosensible chez le bactériophage d’Escherichia coli, C.R.Acad. Sci. 254: 1517 (1962).Google Scholar
  9. 9.
    P.A. Swenson, Physiological responses of Escherichia coli to far-ultraviolet radiation, in: Photochemical and Photobiological Reviews, vol. 1, K.C. Smith ed., Plenum, New York (1976).Google Scholar
  10. 10.
    D. Billen, Replication of the bacterial chromosome: Location of new initiation sites after irradiation, J. Bact. 97: 1169 (1969).PubMedPubMedCentralGoogle Scholar
  11. 11.
    B.J. Bachmann, Pedigrees of some mutant strains of Escherichia coli K-12, Bacteriol. Rev. 36: 525 (1972).Google Scholar
  12. 12.
    M. Medié-Petranovie, 2. Trgovicevié, D. Novak, and D. Petranovié, Inactivation of the Escherichia coli chromosome during growth after uv-irradiation, Int. J. Rad. Biol. 32: 103 (1977).Google Scholar
  13. 13.
    K.C. Smith and M.E. O’Leary, The pitfalls of measuring DNA synthesis kinetics as exemplified in ultraviolet radiation studies, Biochim. Biophys. Acta 169: 430 (1968).Google Scholar
  14. 14.
    G. Trgovicevié and W.D. Rupp, Lambda bacteriophage gene products and x-ray sensitivity of Escherichia coli: Comparison of red-dependent and gam-dependent radioresistance, J. Bact. 123: 212 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Željko Trgovčević
    • 1
  • Erika Salaj-Šmic
    • 1
  • Mirjana Petranović
    • 1
  • Drago Petranović
    • 1
  1. 1.Institute “Ruder BoškovićZagreb CroatiaYugoslavia

Personalised recommendations