Advertisement

The Function of Methylated Bases in DNA of Escherichia coli

  • M. G. Marinus
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 40)

Abstract

The DNA of E.coli K-12 contains 6-methyladenine (6-meA) and 5-methylcytosine (5-meC). Approximately two percent of all adenines are methylated and one percent of all cytosines (1,2,3). These methylated bases are formed by DNA methylases which transfer methyl groups from S-adenosyl-L-methionine to specific base sequences in newly synthesized daughter strand DNA (4,5). Three distinct DNA methylases have been detected in E.coli K-12. The hsd DNA adenine methylase, the dam DNA adenine methylase and the dcm DNA cytosine methylase. The hsd DNA adenine methylase is involved in classical restriction and modification and produces very few methylated adenines in DNA. For further information regarding this enzyme, the reader is referred to recent reviews (6,7).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Srinivasan, P.B. and E. Borek (1964) Science 145: 548–553CrossRefGoogle Scholar
  2. (2).
    Dunn, D.B. and J.D. Smith (1955) Nature, 175: 336–337CrossRefGoogle Scholar
  3. (3).
    Doskocil, J. and Z. Sormova (1965) Biochim. Biophys. Acta 95: 513–515CrossRefGoogle Scholar
  4. (4).
    Borek, E., and P.R. Srinivasan (1966) Ann. Rev. Biochem. 35: 275–297CrossRefGoogle Scholar
  5. (5).
    Billen, D. (1968) J. Mol. Biol 31: 477–486CrossRefGoogle Scholar
  6. (6).
    Meselson, M., R. Yuan and J. Heywood (1972) Ann. Rev. Biochem. 41: 447–466CrossRefGoogle Scholar
  7. (7).
    Arber, W.T. (1974) Frog. Nucleic Acid Res. Mol. Biol. 14: 1–50CrossRefGoogle Scholar
  8. (8).
    May, M.S. and S. Hattman (1975) J. Bacteriol. 123: 768–770PubMedPubMedCentralGoogle Scholar
  9. (9).
    Kondoh, H. and H. Ozeki (1977) Genetics 84: 403–421Google Scholar
  10. (10).
    Bale, A., M. d’Alarcao and M.G. Marinus 21979) Mutation Res. 59: 157–165Google Scholar
  11. (11).
    Schlagman, S., S. Hattman, M.S. May and L. Berger (1976) J. Bacteriol. 126: 990–996PubMedPubMedCentralGoogle Scholar
  12. (12).
    Coulondre C., J.M. Miller, P.J. Farrabaugh and W. Gilbert (1978) Nature 274: 775–780CrossRefGoogle Scholar
  13. (13).
    Lacks, S. and B. Greenberg (1977) J. Mol. Biol. 114: 153–168CrossRefGoogle Scholar
  14. (14).
    Hattman, S., J.E. Brooks and M. Masurekar (1978) J. Mol. Biol 126: 367–380CrossRefGoogle Scholar
  15. (15).
    Geier, G.E. and P. Modrich (1979) J. Biol. Chem. 254: 1408–1413PubMedGoogle Scholar
  16. (16).
    McGraw, B.R. and M.G. Marinus (1980) Mol. Gen. Genet. 178: 309–315CrossRefGoogle Scholar
  17. (17).
    Marinus, M.G. and E.B. Konrad (1976) Mol. Gen. Genet. 149: 273–277CrossRefGoogle Scholar
  18. (18).
    Marinus, M.G. (1980) J. Bacteriol 141: 223–226PubMedPubMedCentralGoogle Scholar
  19. (19).
    Marinus, M.G. and N.R. Morris (1974) J. Mol. Biol. 85: 309–322CrossRefGoogle Scholar
  20. (20).
    Glickman, B.W. (1979) Mutation Res. 61: 153–162CrossRefGoogle Scholar
  21. (21).
    Marinus, M.G. and N.R. Morris (1975) Mutat. Res. 28: 15–26CrossRefGoogle Scholar
  22. (22).
    Glickman, B.W. and M. Radman (1980) Proc. Natl. Acad. Sci., U.S.A. 77: 1063–1067CrossRefGoogle Scholar
  23. (23).
    Wagner, R.W. and M. Meselson (1976) Proc. Natl. Acad. Sci., U.S.A. 73: 4135–4139CrossRefGoogle Scholar
  24. (24).
    Nevers, P. and H.C. Spatz (1975) Mol. Gen. Genet. 139: 233–248PubMedGoogle Scholar
  25. (25).
    Rydberg, B. (1978) Mutat. Res. 52: 11–24CrossRefGoogle Scholar
  26. (26).
    Rydberg, B. (1977) Mol. Gen. Genet. 152: 19–28CrossRefGoogle Scholar
  27. (27).
    Radman, M., G. Villani, S. Boiteux, A.R. Kinsella, B. W. Glickman, and S. Spadari Cold Spring Harbor Symp. Quant. Biol. 43: 937–946Google Scholar
  28. (28).
    Jeggo, P., M. Defais, L. Samson and P. Schendel (1978) Molec. Gen. Genet. 162: 299–205CrossRefGoogle Scholar
  29. (29).
    Lark, C. (1968) T. Mol. Biol. 31: 401–414CrossRefGoogle Scholar
  30. (30).
    Gomez-Eichelmann, M.C. and K.G Lark (1977) J. Mol. Biol. 117: 621–635CrossRefGoogle Scholar
  31. (31).
    Lark, C. (1979) J. Bacteriol. 137: 44–50PubMedPubMedCentralGoogle Scholar
  32. (32).
    Toussaint, A. (1977) J. Virol. 23: 825–826PubMedPubMedCentralGoogle Scholar
  33. (33).
    Hattman, S. (1979) J. Bacteriol 32: 468–475Google Scholar
  34. (34).
    Sugimoto, K., A. Oka, H. Sugisaki, M. Takarami, A. Nishimura, Y. Yasuda and Y. Hirota (1979) Proc. Natl. Acad. Sci., U.S.A. 76: 575CrossRefGoogle Scholar
  35. (35).
    Meijer, M., E. Beck, F.C. Hansen, H.E.N. Bergmans, W. Messer, K. von Meyenberg and H. Schaller (1979) Proc. Natl. Acad. Sci., U.S.A. 76: 580CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. G. Marinus
    • 1
  1. 1.Department of PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations