Advertisement

On the Possible Role of the Miscoding DNA-Lesions, 1,N6-Etheno-Adenine and 3,N4-Ethenocytosine, in Vinyl Chloride-Induced Mutagenesis and Carcinogenesis

  • Alain Barbin
  • Helmut Bartsch
  • Philippe Lecomte
  • Miroslav Redman
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 40)

Abstract

Chloroacetaldehyde (CAA) and chloroethylene oxide (CEO), two reactive metabolites of vinyl chloride, were used to introduce increasing amounts of 1,N6-ethenoadenine (εA) and 3,N4-etheno cytosine (εC) residues in poly(dA) and poly(dC), respectively. The modified polynucleotides were assayed with E. coli DNA polymerase I for their template activity and for misincorporation. The miscoding properties of εA and εC that we observed may explain the mutagenic effects reported for vinyl chloride and its metabolites; these lesions may also represent one of the initial steps in vinyl chloride or CEO-induced carcinogenesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Creech and M.N. Johnson, Angiosarcoma of the liver in the manufacture of polyvinyl chloride, J. Occup. Med., 16: 150151 (1974).Google Scholar
  2. 2.
    IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 19, International Agency for Research on Cancer, Lyon, France (1979).Google Scholar
  3. 3.
    H. Bartsch and R. Montesano, Mutagenic and carcinogenic effects of vinyl chloride, Mutat. Res., 32: 93–114 (1975).Google Scholar
  4. 4.
    A. Barbin, H. Brésil, A. Croisy, P. Jacquignon, C. Malaveille, R. Montesano, and H. Bartsch, Liver-microsome-mediated formation of alkylating agents from vinyl bromide and vinyl chloride, Biochem. Biophys. Res. Commun., 67: 596–603 (1975).CrossRefGoogle Scholar
  5. 5.
    E. Huberman, H. Bartsch, and L. Sachs, Mutation induction in Chinese hamster V79 cells by two vinyl chloride metabolites, chloroethylene oxide and 2-chloroacetaldehyde, Int. J. Cancer, 16: 639–644 (1975).CrossRefGoogle Scholar
  6. 6.
    N. Loprieno, R. Barale, S. Baroncelli, H. Bartsch, G. Bronzetti, A. Cammellini, C. Corsi, D. Frezza, R. Nieri, C. Leporini, D. Rosellini, and A.M. Rossi, Induction of gene mutations and gene conversions by vinyl chloride metabolites in yeast, Cancer Res., 36: 253–257 (1977).Google Scholar
  7. 7.
    C. Malaveille, H. Bartsch, A. Barbin, A.M. Camus, R. Montesano, A. Croisy, and P. Jacquignon, Mutagenicity of vinyl chloride, chloroethyleneoxide, chloroacetaldehyde and chloroethanol, Biochem. Biophys. Res. Commun., 63: 363–370 (1975).CrossRefGoogle Scholar
  8. 8.
    U. Rannug, R. Göthe, and C.A. Wachtmeister, The mutagenicity of chloroethylene oxide, chloroacetaldehyde, 2-chloroethanol and chloroacetic acid, conceivable metabolites of vinyl chloride, Chem.-biol. Interactions, 12: 251–263 (1976).Google Scholar
  9. 9.
    F. Zajdela, A. Croisy, A. Barbin, C. Malaveille, L. Tomatis, and H. Bartsch, Carcinogenicity of chloroethylene oxide, an ultimate reactive metabolite of vinyl chloride, and bis(chloromethyl)ether after subcutaneous administration and in initiation-promotion experiments in mice, Cancer Res., 40: 352–356 (1980).PubMedGoogle Scholar
  10. 10.
    G. Bonse, T. Urban, D. Reichert, and D. Henschler, Chemical reactivity, metabolic oxirane formation and biological reactivity of chlorinated ethylenes in the isolated perfused rat liver preparation, Biochem. Pharmacol., 24: 1829–1834 (1975).Google Scholar
  11. 11.
    R.J. Laib and H.M. Bolt, Alkylation of RNA by vinyl chloride metabolites in vitro and in vivo: formation of 1,N6-ethenoadenosine, Toxicology, 8: 185–195 (1977).CrossRefGoogle Scholar
  12. 12.
    R.J. Laib and H.M. Bolt, Formation of 3,N4-ethenocytidine moieties in RNA by vinyl chloride metabolites in vitro and in vivo, Arch. Toxicol., 39: 235–240 (1978).Google Scholar
  13. 13.
    J.R. Barrio, J.A. Secrist III, and N.J. Leonard, Fluorescent adenosine and cytidine derivatives, Biochem. Biophys. Res. Commun., 46: 597–604 (1972).CrossRefGoogle Scholar
  14. 14.
    T. Green and D.E. Hathway, Interactions of vinyl chloride with rat-liver DNA in vivo, Chem.-biol. Interactions, 22: 211–224 (1978).Google Scholar
  15. 15.
    L.L. Gerchman and D.B. Ludlum, The properties of 06-methylguanine in templates for RNA polymerase, Biochim. Biophys. Acta, 308: 310–316 (1973).Google Scholar
  16. 16.
    P.J. Abbott and R. Saffhill, DNA synthesis with methylated poly(dC-dG) templates. Evidence for a competitive nature to miscoding by 06-methylguanine, Biochim. Biophys. Acta, 562: 51–61 (1979).Google Scholar
  17. 17.
    A.E. Pegg, Formation and metabolism of alkylated nucleosides: possible role in carcinogenesis by nitroso compounds and alkylating agents, Adv. Cancer Res., 25: 195–269 (1977).CrossRefGoogle Scholar
  18. 18.
    C.W. Shearman and L.A. Loeb, Effects of depurination on the fidelity of DNA synthesis, J. Mol. Biol., 128: 197–218 (1979).CrossRefGoogle Scholar
  19. 19.
    C.W. Shearman and L.A. Loeb, Effects of depurination on the fidelity of DNA synthesis, J. Mol. Biol., 128: 197–218 (1979).CrossRefGoogle Scholar
  20. 20.
    J. Biernat, J. Ctssiolk, P.., ßérnicki,.R.W4 Adamtak, W.1. Krzyzosiak, and M. Wiewigrowski, New observations concerning the chloroacetaldehyde reaction with some tRNA constituents. Stable intermediates, kinetics and selectivity of the reaction, Nucleic Acids Res., 5: 789–804 (1978).CrossRefGoogle Scholar
  21. 21.
    J. McCann, V. Simenon, D. Streitwieser, and B.N. Ames., Mutagenicity of chloroacetaldehyde, a possible metabolic product of 1,2-dichloroethane (ethylene dichloride), chloroethanol (ethylene chlorohydrin), vinyl chloride, and cyclophosphamide, Proc. Nati. Acad. Sci. USA, 72: 3190–3193 (1975).CrossRefGoogle Scholar
  22. 22.
    U. Rannug, A. Johanson, C. Reuel, and C. Wachtmeister, Mutagenicity of vinyl chloride after metabolic activation, Ambio, 3: 194–197 (1974).Google Scholar
  23. 23.
    P.J. Abbott and R. Saffhill, DNA synthesis with methylated poly(dA-dT) templates: possible role of 04-methylthymine as a pro-mutagenic base, Nucleic Acids Res., 4: 761–769 (1977).CrossRefGoogle Scholar
  24. 24.
    B. Singer, N-Nitroso alkylating agents: formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis, J. Nati. Cancer Inst., 62: 1329–1339 (1979).Google Scholar
  25. 25.
    H. Ottenwälder, R.J. Laib, and H.M. Bolt, Alkylation of RNA by vinyl bromide metabolites in vitro and in vivo, Arch. Toxicol., 41: 279–286 (1979).Google Scholar
  26. 26.
    D.B. Ludlum, B.S. Kramer, J. Wang, and C. Fenselau, Reaction of 1,3-bis(2-chloroethyl)-1 nitrosourea with synthetic poly-nucleotides, Biochemistry, 14: 5480–5485 (1975).CrossRefGoogle Scholar
  27. 27.
    W.P. Tong and D.B. Ludlum, Mechanism of action of the nitrosoureas-III. Reaction of bis-chloroethyl nitrosourea and bis-fluoroethyl nitrosourea with adenosine, Biochem. Pharmacol., 28: 1175–1179 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Alain Barbin
    • 1
  • Helmut Bartsch
    • 1
  • Philippe Lecomte
    • 2
  • Miroslav Redman
    • 2
  1. 1.International Agency for Research on CancerLyon Cédex 2France
  2. 2.Free University of BrusselsRhode-St-GenèseBelgium

Personalised recommendations