Inhibition or Absence of DNA Proofreading Exonuclease is Not Sufficient to Allow Copying of Pyrimidine Dimers

  • O. P. Doubleday
  • G. Michel-Maenhaut
  • A. Brandenburger
  • P. Lecomte
  • M. Radman
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 40)


Speculation about the role of the 3′ to 5′ proofreading exonuclease function of DNA polymerases during UV mutagenesis has led us to examine the extents of DNA synthesis performed by a variety of different DNA polymerases, upon intact and UV-irradiated ØX174 DNA. The relative inhibition of DNA synthesis after UV-irradiation in the presence of the heavy metal ions Ag+ and Hg++, and use of the T4 pyrimidine dimer specific endonuclease, confirms that the majority of the UV-induced inhibition of DNA synthesis is due to the presence of pyrimidine dimers in the template DNA. Experiments with DNA polymerases lacking 3′ to 5′ exonuclease activity, or with inhibited or denatured 3′ to 5′ exonuclease activity, revealed that pyrimidine dimers constitute an absolute block for DNA synthesis, irrespective of 3′ to 5′ exonuclease proofreading activity. It is therefore concluded that, although it might be required, inhibition or absence of 3′ to 5′ proofreading activity is not sufficient to allow efficient transdimer synthesis.


Exonuclease Activity Pyrimidine Dimer Direct Mutagen Avian Myeloblastosis Virus Indirect Mutagen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banks, G.R., Boezy, J.A. and Lehman, I.R., 1979, J. Biol. Chem. 254: 9886–9892.PubMedGoogle Scholar
  2. Battula, N. and Loeb, L.A., 1975, J. Biol. Chem. 251: 982–986.Google Scholar
  3. Bird, A.P., 1980, Nucl. Acids Res. 8: 1499–1504.PubMedCrossRefGoogle Scholar
  4. Bridges, B.A., Mothershead, R.P. and Sedgwick, S.G., 1976, Molec. gen. Genet. 144: 53–58.PubMedCrossRefGoogle Scholar
  5. Bridges, B.A., 1978, Nature 275: 591–592.PubMedCrossRefGoogle Scholar
  6. Bvrnes,J.J., Downey, K.M., Que, B.G., Lee, M.Y.W., Black, V.L. and So, A.G., 1977, Biochemistry 16: 3740–3746.Google Scholar
  7. Caillet-Fauquet, P., Defais, M. and Radman, M., 1977, J. Mol. Biol. 117: 95–112.PubMedCrossRefGoogle Scholar
  8. Challberg, M.D. and Englund, P.T., 1979, J. Biol. Chem. 254: 7820–7826.PubMedGoogle Scholar
  9. Clayton, L.K., Goodman, M.F., Branscomb, E.W. and Galas, D.J., 1979 J. Biol. Chem. 254: 1902–1912.PubMedGoogle Scholar
  10. Conrad, S.E. and Campbell, J.L., 1979, Nucleic Acids Res. 6: 3289–3303.PubMedCrossRefGoogle Scholar
  11. Coulondre, C. and Miller, J.H., 1977, J. Mol. Biol. 117: 577–606.PubMedCrossRefGoogle Scholar
  12. Coulondre, C., Miller, J.H., Farabaugh, Ph.J. and Gilbert, W., 1978, Nature 274: 775–780.PubMedCrossRefGoogle Scholar
  13. Godson, G.N. and Vapnek, D., 1973, Biochem. Biophys. Acta 299:516–520.Google Scholar
  14. Hall, Z.W. and Lehman, I.R., 1968, J. Mol. Biol. 36: 321–333.PubMedCrossRefGoogle Scholar
  15. Hershfield, M.S., 1973, J. Biol. Chem. 248: 1417–1423.PubMedGoogle Scholar
  16. Huang, C-C. and Hearst, J.E., 1980, Anal. Biochem. 103: 127–139.PubMedCrossRefGoogle Scholar
  17. Kacian, D.L. and Spiegelman, S., 1973, in:“Methods in Enzymology” Vol 29E, L. Grossman and K. Moldave, ed., Academic Press New York.Google Scholar
  18. Kornberg, A., 1974, DNA Synthesis, Freeman, San Francisco CA.Google Scholar
  19. Loeb, L.A., Weymouth, L.A., Kunkel, T.A., Gopinathan, K.P., Bechman, R.A. and Dube, D.K., 1978, On the fidelity of DNA. Replication, Cold Spring Harbor Symposia on Quantitative Biology XLIII, 921–927.Google Scholar
  20. McDonell, M.W., Simon, M.N. and Studier, F.W., 1977, J. Mol. Biol. 110: 119–146.PubMedCrossRefGoogle Scholar
  21. Maniatis, T., Jeffrey, A. and van de Sande, H., 1975, Biochemistry 14: 3787–3794.PubMedCrossRefGoogle Scholar
  22. Moore, P. and Strauss, B.S., 1979, Nature 278: 664–666.PubMedCrossRefGoogle Scholar
  23. Ninio, J., 1975, Biochimie 57: 587–595.PubMedCrossRefGoogle Scholar
  24. Radman, M., Villani, G., Boiteux, S., Defais, M., Caillet-Fauquet,P. & Spadari, S., 1977, in “Origins of Human Cancer, H. Hiatt et al. ed., Cold Spring Harbor, New York.Google Scholar
  25. Rahn, R.O., Battista, M.D.C. and Landry, L.C., 1970, Proc. Natl. Acad. Sci. USA 67: 1390–1397.PubMedCrossRefGoogle Scholar
  26. Rahn, R.O. and Landry, L.C., 1973, Photochem. Photobiol. 18: 29–38.PubMedCrossRefGoogle Scholar
  27. Rahn, R.O., Setlow, J.K. and Landry, L.C., 1973, Photochem. Photobbí, 18: 39–41.CrossRefGoogle Scholar
  28. Richardson, C.C., Schildkraut, C.L., Aposhian, H.V. and Kornberg, A. 1964, J. Biol. Chem. 239: 222–232.PubMedGoogle Scholar
  29. Sanger, F., stir, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddles, J.C., Hutchison, C.A., Slocombe, P.M. and Smith, M. 1977, Nature 265: 687–695.PubMedCrossRefGoogle Scholar
  30. Sanger, F., Coulson, A.R., Friedman, T., Air, G.M., Barrell, B.G., Brown, N.L., Fiddles, J.C., Hutchison, C.A., Slocombe, P.M. and Smith, M., 1978, J. Mol. Biol. 125: 225–246.PubMedCrossRefGoogle Scholar
  31. Schroeder, C., 1979, Eur. J. Biochem. 102: 291–296.PubMedCrossRefGoogle Scholar
  32. Setlow, R.B., Swenson, P.A. and Carrier, W.L., 1963, Science 142: 1464–1466.PubMedCrossRefGoogle Scholar
  33. Trautner, T.A., Swartz, M.N. and Kornberg, A., 1962, Proc. Natl. Acad. Sci. USA 48: 449–455.PubMedCrossRefGoogle Scholar
  34. Villani, G., Boiteux, S. and Radman, M., 1978, Proc. Nati. Acad. Sci. USA 75: 3037–3041.CrossRefGoogle Scholar
  35. Witkin, E.M., 1966, Science 152: 1345–1353.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • O. P. Doubleday
    • 1
  • G. Michel-Maenhaut
    • 1
  • A. Brandenburger
    • 1
  • P. Lecomte
    • 1
  • M. Radman
    • 1
  1. 1.Département de Biologie MoléculaireUniversité Libre de BruxellesRhode-St-GenèseBelgium

Personalised recommendations