Xeroderma Pigmentosum — A Human Model of Defective DNA Repair

  • Errol C. Friedberg
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 40)


The human disease xeroderma pigmentosum (XP) has been intensively studied ever since Cleaver first provided evidence of defective repair of DNA damage in 1968 (1). The disease is inherited by an autosomal recessive mode and is clinically characterized chiefly by severe photosensitivity of the skin and eyes, a high frequency of a variety of neurologic abnormalities and an almost 100% incidence of malignant skin tumors. It is noteworthy that tumors in other sites have not been reported with an abnormal frequency in this disease. All known cases of XP fall into two major classes, based on the ability of cells in culture (usually fibroblasts) to repair DNA damage caused by ultraviolet (UV) radiation. So-called typical or classical XP is characterized by defective nucleotide excision repair of pyrimidine dimers in asynchronous fibroblast cultures exposed to UV light at~254 nm. XP variant cases are clinically indistinguishable from the typical form of XP, but fail to show defects in any of the currently available biochemical parameters that directly or indirectly measure the excision of pyrimidine dimers in asynchronous fibroblast cultures. The technique of cell hybridization has been used to classify typical XP cases into a number of apparently distinct genetic groups (complementation groups) defined by their ability to complement the restoration of normal levels of excision repair measured by unscheduled DNA synthesis (UDS) in heterodikaryons. At the time of writing, approximately 100 cases have been designated in the literature by an internationally agreed upon nomenclature (2) and assigned to one of 7 complementation groups. The clinical symptoms and signs and the variety of genetic, cellular and biochemical defects associated with XP have been extensively reviewed by a number of authors (3–6) in recent years and the interested reader is referred to this literature for a more detailed description. In this article I have specifically focused on some of the literature published during the past two years and have attempted to draw attention to selected new aspects of the disease.


Xeroderma Pigmentosum Complementation Group Pyrimidine Dimer Base Damage Normal Human Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cleaver, J.E. (1968). Nature, 218, 652.PubMedCrossRefGoogle Scholar
  2. 2.
    Cleaver, J.E., Bootsma, D., and Friedberg, E. (1975) Genetics 79, 215.PubMedGoogle Scholar
  3. 3.
    Cleaver, J.E. and Bootsma, D. (1975). Annu. Rev. Genet. 9, 19.PubMedCrossRefGoogle Scholar
  4. 4.
    Setlow, R.B. (1978). Nature 271, 713.PubMedCrossRefGoogle Scholar
  5. 5.
    Arlett, C., and Lehmann, A.R(1979). Annu. Rev. Genet. 12, 95.CrossRefGoogle Scholar
  6. 6.
    Friedberg, E.C., Ehmann, U.K., and Williams, J.I. (1979). Adv. Rad. BioL 8, 86.Google Scholar
  7. 7.
    Hashem, N., Bootsma, D., Keijzer, W., Greene, A., Coriell, L., Thomas, G., and Cleaver, J.E. (1980). Cancer Res. 40, 13.PubMedGoogle Scholar
  8. 8.
    Arase, S., Kozuka, T., Tanaka, K. Ikenaga, M. and Takebe, H.(1979). Mutation Res. 59, 143.PubMedCrossRefGoogle Scholar
  9. 9.
    Keijzer, W., Jaspers, N.G.J., Abrahams, P.J., Taylor, A.M.R., Arlett, C.F., Zelle, B., Takebe, H., Kinmont, P.D.S., and Bootsma, D (1979). Mutation Res. 62, 183.PubMedCrossRefGoogle Scholar
  10. 10.
    Andrews, A.D., Barrett, S.F. and Robbins, J.H. (1978). Proc. NatL Acad. Sci. (USA) 75, 1980.CrossRefGoogle Scholar
  11. 11.
    Hurley, L.H., Chandler, C., Garner, T.F., Petrusek, R., and Zimmer, S.G. (1979). J. BioL Chem. 254, 605.PubMedGoogle Scholar
  12. 12.
    Coppey, J., and Nocentini, S. (1979) Mutation Res. 62, 355.PubMedCrossRefGoogle Scholar
  13. 13.
    Zelle, B (1980). Ph.D. Thesis, Erasmus University, Rotterdam.Google Scholar
  14. 14.
    Ahmed, F.E., and Setlow, R.B. (1979). Cancer Res. 39, 471.Google Scholar
  15. 15.
    Ahmed, F.E. and Setlow, R.B. (1980). Chem-Biot Interactions 29, 31.CrossRefGoogle Scholar
  16. 16.
    Brown, A.J., Fickel, T.H., Cleaver, J.E., Lohman, P.H.M., Wade, M.H. and Waters, R. (1979). Cancer Res. 39, 2522.PubMedGoogle Scholar
  17. 17.
    Goth-Goldstein, R. (1977). Nature 267, 81.PubMedCrossRefGoogle Scholar
  18. 18.
    Altamirano-Dimar, M., Sklar, R., and Strauss, B. (1979). Mutation Res. 60, 197.CrossRefGoogle Scholar
  19. 19.
    Bodell, W.J., Singer, B., Thomas, G.H. and Cleaver, J.E. (1979) Nucleic Acids Res. 6, 2819.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuhnlein, U. Penhoet, E.E. and Linn, S. (1976). Proc. NatL Acad. Sci. (USA) 73, 1169.CrossRefGoogle Scholar
  21. 21.
    Kuhnlein, U., Lee, B., Penhoet, E.E. and Linn, S. (1978). Nucleic Acids Res. 5, 951.PubMedCrossRefGoogle Scholar
  22. 22.
    Kudrna, R.D. Smith, J., Linn, S., and Penhoet, E.E. (1979). Mutation Res. 62,173.PubMedCrossRefGoogle Scholar
  23. 23.
    Deutsch, W.A., and Linn, S. (1979). Proc. Natl. Acad. Sci. (USA) 76, 141.CrossRefGoogle Scholar
  24. 24.
    Moses, R.E., and Beaudet, A.L. (1978). Nucleic Acids Res. 5, 463.PubMedCrossRefGoogle Scholar
  25. 25.
    Witte, I., and Thielmann, H.W. (1979). Cancer Lett. 6, 129.PubMedCrossRefGoogle Scholar
  26. 26.
    Ishiwata, K., and Oikawa, A. (1979). Biochem Biophys. Acta. 563, 375.PubMedGoogle Scholar
  27. 27.
    Zelle, B., and Lohman, P.H.M. (1979). Mutation Res 62, 363.Google Scholar
  28. 28.
    Mortelmans, K., Friedberg, E.C., Slor, H., Cleaver, J.E., and Thomas, G. (1976). Proc. NatL Acad. Sci. (USA) 73, 2757.CrossRefGoogle Scholar
  29. 29.
    Friedberg, E.C., Rude, J.M., Cook, K.H., Ehmann, U.K., Mortelmans, K., Cleaver, J.E., and Slor, H. (1977) in “DNA Repair Processes”, eds. W.W. Nichols and D.G. Murphy. Symposia Specialists. Miami, FL, p 21.Google Scholar
  30. 30.
    Cleaver, J.E. (1977). Nature 270, 451.PubMedCrossRefGoogle Scholar
  31. 31.
    Smerdon, M.J., Tlsty, T.D. and Lieberman, M.W. (1978). Biochemistry 17, 2377.PubMedCrossRefGoogle Scholar
  32. 32.
    Williams, J.I., and Friedberg, E.C. (1979). Biochemistry 18, 3965.PubMedCrossRefGoogle Scholar
  33. 33.
    Smerdon, M.J., Kastan, M.B., and Lieberman, M.W. (1979) Biochemistry 18, 3732.PubMedCrossRefGoogle Scholar
  34. 34.
    Dukacz, B.W., Omidiji, O., Gray, D.A., and Shall, S. (1980). Nature 283, 593.CrossRefGoogle Scholar
  35. 35.
    Berger, N.A., Sikorski, G.W., Petzold, S.J., and Kurohara, K.K. (1980). Biochemistry 19, 289.CrossRefGoogle Scholar
  36. 36.
    Seeberg, E., Nissen-Meyer, J. and Strike, P. (1976). Nature 263.Google Scholar
  37. 37.
    Seeberg, E. (1978). Proc. NatL Acad. Sci. (USA) 75, 2569.Google Scholar
  38. 38.
    Seeberg, E. (1980). Prog. Nuc. Acids Res. Mol. BioL (In press)Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Errol C. Friedberg
    • 1
  1. 1.Laboratory of Experimental Oncology Department of PathologyStanford UniversityStanfordUSA

Personalised recommendations