Skip to main content

Damage to DNA Caused by Hydrolysis

  • Chapter
Chromosome Damage and Repair

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 40))

Abstract

The covalent structure of DNA is unstable in aqueous solution. It tends to hydrolyze to its monomeric components, and they themselves are subject to various hydrolytic reactions. These processes are slow, when compared to most familiar chemical reactions. However, a reaction that is slow by these standards may still have great biological significance, if it occurs within the genetic material of an organism. A single base transformation within a DNA molecule may be sufficient to cause a mutation, or inactivate the DNA. Consider a reaction, for example, with a rate constant of 10−10 sec−1 at pH 7.4, 37°; it will have a half life of 220 years. Assume that, within a DNA, it affects two of the four bases. It will take place once every three hours per million base pairs of DNA, and thus be a significant source of damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shapiro, R. and Klein, R.S. (1966) Biochemistry 5: 2358–2362

    Article  CAS  PubMed  Google Scholar 

  2. Garrett, E.R. and Tsau, J. (1972) J. Pharm Sci. 61: 1052–1061

    Article  CAS  PubMed  Google Scholar 

  3. Budowsky, E.I., Sverdlov, D.D., Shibaeva, R.P., Monastyrkaya, G.S. and Kochetkov, N.K. (1971) Biochim. Biophys. Acta 246: 300–319

    Article  CAS  PubMed  Google Scholar 

  4. Notari, R.E., Chin, M.L. and Wittebort, R. (1972) J. Pharm Sci. 61: 1189–1196

    Article  CAS  PubMed  Google Scholar 

  5. Dudcz, E., Darzynkiewicz, E. and Shugar, D. (1977) Acta Biochim. Polon. 24: 207–214

    Google Scholar 

  6. Fisher, G.J. and Johns, H.E. (1976) In: S.Y. Wang (ed)“Photochemistry and Photobiology of Nucleic Acids’; Vol. I, Academic Press, New York, pp 169–224

    Chapter  Google Scholar 

  7. Shapiro, R., DiFate, V. and Welcher, M. (1974) J. Amer. Chem. Soc. 96: 906–912

    Article  CAS  Google Scholar 

  8. Slae, S. and Shapiro, R. (1978) J. Org. Chem. 43: 1721–1726

    Article  CAS  Google Scholar 

  9. Hayatsu, H. (1976) Progr. Nucleic Acid Res. Mol. Biol. 16: 75124

    Google Scholar 

  10. Shapiro, R. (1977) Mutation Res. 39: 149–176

    Article  CAS  PubMed  Google Scholar 

  11. Lindahl, T. and Nyberg, B. (1972) Biochemistry 11: 3610–3618

    Article  CAS  PubMed  Google Scholar 

  12. Coulondre, C., Miller, J.H., Farabaugh, P.J. and Gilbert, W. (1978) Nature 274: 775–780

    Article  CAS  Google Scholar 

  13. Jordan, D.O. (1960)“The Chemistry of Nucleic Acids,” Butter-worth’s, Washington, D.C., p 65

    Google Scholar 

  14. Jones, A.S., Mian, M. and Walker, R.T. (1966) J. Chem. Soc. (C):692–695

    Google Scholar 

  15. Kammen, H.O. and Spengler, S.J. (1970) Biochim. Biophys. Acta 213: 352–364

    Article  CAS  PubMed  Google Scholar 

  16. Ganguli, P.K., Reiner, A. and Gyenes, L. (1971) Biochim. Biophys. Acta 254: 167–171

    Article  CAS  PubMed  Google Scholar 

  17. Ullman, J.S. and McCarthy, B.J. (1973) Biochim. Biophys. Acta 294: 396–404

    Article  CAS  PubMed  Google Scholar 

  18. Lindahl, T. and Nyberg, B. (1979) Progr. Nucleic Acid Res. Mol. Biol. 22: 135–192

    Article  CAS  Google Scholar 

  19. Capon, B. (1969) Chem. Rev. 69: 407–498

    Article  CAS  Google Scholar 

  20. Shapiro, R. and Kang, S. (1969) Biochemistry 11: 1806–1810

    Article  Google Scholar 

  21. Shapiro, R. and Danzig, M. (1972) Biochemistry 11: 23–29

    Article  CAS  PubMed  Google Scholar 

  22. Zoltewicz, J.A., Clark, D.F., Sharpless, T.W. and Grahe, G. (1970) J. Amer. Chem. Soc. 92: 1741–1750

    Article  CAS  Google Scholar 

  23. Garrett, E.R. and Mehta, P.J. (1972) J. Amer. Chem. Soc. 94: 8532–8541

    Article  CAS  Google Scholar 

  24. Zoltewicz, J.A. and Clark, D.F. (1972) J. Amer. Chem. 37: 1193 1197

    Google Scholar 

  25. Hevesi, L., Wolfson-Davidson, E., Nagy, J.B., Nagy, 0.B. and Bruylants, A. (1972) J. Amer. Chem. Soc. 94: 4715–4719

    Article  CAS  Google Scholar 

  26. Romero, R.,,Stein, R., Bull, H.G. and Cordes, E.H. (1978) J. Amer.. Chem. Soc. 100: 7620–7624

    Google Scholar 

  27. Cadet, J. and Teoule, R. (1974) J. Amer. Chem. Soc. 96: 6517–6519

    Article  CAS  Google Scholar 

  28. Garrett, E.R. and Mehta, P.J. (1972) J. Amer. Chem. Soc. 94: 8542–8547

    Article  CAS  Google Scholar 

  29. Greer, S. and Zamenhof, S. (1962) J. Mol. Biol. 4: 123–141

    Article  CAS  PubMed  Google Scholar 

  30. Lindahl, T. and Nyberg, B. (1972) Biochemistry 11: 3610–3618

    Article  CAS  PubMed  Google Scholar 

  31. Jones, A.S., Mian, A.M. and Walker, R.T. (1966) J. Chem. Soc. (C):1784–1786

    Google Scholar 

  32. Lindahl, T. and Anderson, A. (1972) Biochemistry 11: 3618–3623

    Article  CAS  PubMed  Google Scholar 

  33. Brown, D.M. (1974) In: P.O.P. Ts’o (ed) “Basic Principles in Nucleic Acid Chemistry,” Vol. II, Academic Press, New York, pp 1–90

    Google Scholar 

  34. Crine, P. and Verly, W.G. (1976) Biochim. Biophys. Acta 442: 50–57

    Article  CAS  PubMed  Google Scholar 

  35. Lindahl, T. and Ljungquist, S. (1977) In: P.0 Hanamawalt and R.B. Setlow (eds) “Molecular Mechanisms for Repair of DNA,” Part A, Plenum Press, New York, pp 31–38

    Chapter  Google Scholar 

  36. Eigner, J. Boedtker, H. and Michaels, G. (1961) Biochim. Biophys. Acta 51: 165–168

    Article  CAS  PubMed  Google Scholar 

  37. Lehninger, A.L. (1975)“Biochemistry,”Second Edition, Worth, New York, p 24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Shapiro, R. (1981). Damage to DNA Caused by Hydrolysis. In: Seeberg, E., Kleppe, K. (eds) Chromosome Damage and Repair. NATO Advanced Study Institutes Series, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7956-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7956-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7958-4

  • Online ISBN: 978-1-4684-7956-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics