Advertisement

The Theory of Functions of Several Complex Variables in China from 1949 to 1989

  • Qi-Keng Lu
Part of the The University Series in Mathematics book series (USMA)

Abstract

Thirty years ago a paper with a similar title was written surveying the development of the same subject in China from 1949 to 1959 (Lu [100]). Since then, a number of younger mathematicians have come of age. Professor L.-K. Hua, the founder of several complex variables in China, died in 1985. Professor J.-Q. Zhong, the most distinguished Chinese mathematician of his generation, died in 1987 before his fiftieth birthday. It is time to review again what we have done in the past 40 years. With the help of my colleagues, I have done my best to collect in the bibliography all obtainable papers or titles of papers written by the Chinese in this field. Special thanks are due to Professors Z.-H. Chen, Y.-C. Su, J.-H. Zhang, and T.-D. Zhong for their cooperation. But I am afraid that this bibliography is still far from complete; for example, I did not have at hand all the journals published by the hundreds of universities in China.

Keywords

Acta Math Complex Variable Singular Integral Equation Bergman Kernel Symmetric Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.A.Aizenberg and A.P.Juzakov, Integral Representation and Residues in Multidimensional Complex AnalysisNauka.otdel.,Novosibirsk(1979)(in Russian).Google Scholar
  2. 2.
    E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Mongé-Ampère equation, Invent. Math 37, 1–44 (1976).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    E. Bedford and B. A. Taylor, Variational properties of the complex Mongé-Ampère equation and intrinsic norms, Am. J. Math 7, 249–279 (1979).MathSciNetGoogle Scholar
  4. 4.
    H. Behnke and P. Thullen, Theorie der Funktionen Mehreren Komplexer Veränderlichen, Ergebnisse Math., Springer, Berlin (1933).Google Scholar
  5. 5.
    S. Bergman, Sur les Fonctions Orthogonales de Plusieurs Variables Complexes avec les Applications à la Theorie des Fonctions, Gauthier-Villars, Paris (1947).Google Scholar
  6. 6.
    H. Boas, Counterexample to the Lu Qi-Keng conjecture, Proc. Am. Math. Soc 97, 36–37 (1986).MathSciNetGoogle Scholar
  7. 7.
    C. Carathéodory, Ueber das Schwarz Lemma bei analytischen Funktionen von mehreren Veränderlichen, Math. Ann 97, 76–98 (1927).MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Carrell and D. Lieberman, Holomorphic vector fields and Kähler manifolds, Invent. Math 21, 303–309 (1973).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    J. Carrell and D. Lieberman, Chern classes of the Grassmannians and Schubert calculus, Topology 17, 177–183 (1978).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    É. Cartan, Sur les domaines bornés homogènes de l’éspace de n variables complexes, Hamburg Univ. Math. Sem. Abh 11, 106–162 (1936).Google Scholar
  11. 11.
    H. Cartan, Sur les Groupes de Transformations Analytiques, Actualités Sci. Ind., Exposés Math., IX, Paris (1935).Google Scholar
  12. 12.
    Guang-Xiao Chen, On the fundamental solutions of Poisson equation of matrix classical domain, Sci. Sinica Ser. A 8, 813–825 (1987) (in English).Google Scholar
  13. 13.
    Guang-Xiao Chen and Jao-Qi He, Dissertation, Beijing (1981).Google Scholar
  14. 14.
    Jian-Xin Chen, The Cauchy type integral of (p, n - 1)-forms, J. Xiaman Univ 22, 398–405 (1983).Google Scholar
  15. 15.
    Shu-Jin Chen, The integral representation on a convex domain in C“, Acta Math. Sinica 22, 743–750 (1979).MathSciNetGoogle Scholar
  16. 16.
    Shu-Jin Chen, An integral representation in C“, Acta Math. Sinica 24, 538–544 (1981).MathSciNetGoogle Scholar
  17. 17.
    Shu-Jin Chen, The Leray-Stokes formula of a polyhedron in C“, Kexue Tongbao 21, 1292–1295 (1982).Google Scholar
  18. 18.
    Shu-Jin Chen, The Sakotski-Plemelj formula on a class of Cauchy-Fantappié type integral, Kexue Tongbao 23, 267–273 (1984).Google Scholar
  19. 19.
    Shu-Jin Chen, The integral representation of holomorphic functions in C“, J. Univ. Xiaman 25, 1–9 (1986).Google Scholar
  20. 20.
    Zhi-Hua Chen, A note on Kähler immersion, Kexue Tongbao, Math. Special Ser 25, 111–114 (1980).Google Scholar
  21. 21.
    Zhi-Hua Chen, Some theorems on the totally geodesic maps, Sci. Sinica Ser. A 2, 97–103 (1985).Google Scholar
  22. 22.
    Zhi-Hua Chen, Shiu-Yuen Cheng, and Qi-Keng Lu, On the Schwarz lemma for complete Kähler manifolds, Sci. Sinica 12, 1238–1247 (1979) (in English).Google Scholar
  23. 23.
    Zhi-Hua Chen and Hong-Cang Yang, A Schwarz lemma for a compact manifold whose Ricci curvature is bounded from below, Acta Math. Sinica 24, 945–952 (1981).MathSciNetMATHGoogle Scholar
  24. 24.
    Zhi-Hua Chen and Hong-Cang Yang, Estimation of decreasing coefficients of K-dilatation harmonic maps, Kexue Tongbao, Foreign Land Ed. 28, 979–982 (1983).Google Scholar
  25. 25.
    Zhu-Hua Chen and Hong-Cang Yang, On Schwarz lemma for complete Hermitian manifolds, in Several Complex Variables (Proc. 1981 Hangzhou Conf.), pp. 99–116, Birkhauser (1984) (in English).Google Scholar
  26. 26.
    Zhi-Hua Chen and Hong-Cang Yang, Estimation of the upper bound on the Levi form of the distance function on Hermitian manifolds and its applications, Acta Math. Sinica 27, 631–643 (1984).MathSciNetMATHGoogle Scholar
  27. 27.
    Zhi-Hua Chen and Hong-Cang Yang, The Schwarz lemma of quasi-conformal harmonic mappings, Progress in Math. 13, 311–317 (1984).MATHGoogle Scholar
  28. 28.
    Zhi-Hua Chen and Hong-Cang Yang, Torsion and Steinness, Sci. Sinica Ser. A 27, 457–482 (1984) (in English).MathSciNetGoogle Scholar
  29. 29.
    Zhi-Hua Chen and Hong-Cang Yang, A class of Liouville theorems, Acta Math. Sinica 28, 218–232 (1985).MathSciNetMATHGoogle Scholar
  30. 30.
    Zhi-Hua Chen and Hong-Cang Yang, A note on Steinness, Chinese Ann. Math. Ser. A 7, 119–122 (1986).MathSciNetMATHGoogle Scholar
  31. 31.
    S. S. Chern, H. I. Levine, and L. Nirenberg, Intrinsic norms on a complex manifold, in Global Analysis, Papers in Honor of K. Kodaira, pp. 119–139, Princeton University Press, Princeton (1969).Google Scholar
  32. 32.
    S. G. Gindikin, Analysis in homogeneous domains, Uspehi Mat. Nauk 19, 3–92 (1964); English transi., Russian Math. Surveys 19, 1–89 (1964).MathSciNetCrossRefGoogle Scholar
  33. 33.
    Hui-Sheng Gong and Fang-Cao Ye, The invariant differential operators of classical symmetric domain, J. Xiaman Univ 11, 55–67 (1960).Google Scholar
  34. 34.
    Sheng Gong, Fourier analysis on unitary group. I, Acta Math. Sinica 10, 239–261 (1960).Google Scholar
  35. 35.
    Sheng Gong, Fourier analysis on unitary group. II, Acta Math. Sinica 12, 17–31 (1962).Google Scholar
  36. 36.
    Sheng Gong, Fourier analysis on unitary group. III, Acta Math. Sinica 13, 152–161 (1963).Google Scholar
  37. 37.
    Sheng Gong, Fourier analysis on unitary group. IV, Acta Math. Sinica 13, 323–331 (1963).Google Scholar
  38. 38.
    Sheng Gong, Fourier analysis on unitary group. V, Acta Math. Sinica 15, 305–325 (1965).Google Scholar
  39. 39.
    Sheng Gong, Partial sum of Fourier series on a rotation group, J. China Univ. Sci. Technol. in China 9, 25–30 (1979).Google Scholar
  40. 40.
    Sheng Gong, A remark on the integral of Cauchy type on strictly pseudo-convex domains, in Proc. 1980 Symp. Differential Geometry and Differential Equations, vol. III, pp. 11831190, Science Press, Beijing (1982) (in English).Google Scholar
  41. 41.
    Sheng Gong, Singular Integral in Several Complex Variables, Shanghai Science and Technology Press, Shanghai (1982).Google Scholar
  42. 42.
    Sheng Gong, Harmonic Analysis on Classical Group, Science Press, Beijing (1983).Google Scholar
  43. 43.
    Sheng Gong, Schwarz lemma on Einstein space of several complex variables, Acta Math. Sinica 7, 471–476 (1957).MathSciNetGoogle Scholar
  44. 44.
    Sheng Gong, A remark on Möbius transformations for higher dimensions, in Proc. 1981 Shanghai-Hofei Symp. on Differential Geometry and Differential Equations, pp. 75–94 (in English) Science Press, Beijing (1989).Google Scholar
  45. 45.
    Sheng Gong, On Reinhardt domains. I, Kexue Tongbao 31, 433–438 (1986).MATHGoogle Scholar
  46. 46.
    Sheng Gong and S. S. Miller, Partial differential subordinations in inequalities defined on complete circular domains, Comm. Partial Di„J Eq 11, 1243–1255 (1986) (in English).MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Sheng Gong and Ji-Huai Shi, A note on the Poisson formula for the transitive domain of several complex variables, J. Univ. Sci. Technol. in China 2 16–20 (1966).Google Scholar
  48. 48.
    Sheng Gong and Ji-Huai Shi, Singular integrals in several complex variables. I: Henkin integrals of strictly pseudoconvex domains, Chinese Ann. Math 3, 473–502 (1982).MathSciNetGoogle Scholar
  49. 49.
    Sheng Gong and Ji-Huai Shi, Singular integrals in several complex variables. II: Hadamard principal value on a sphere, Chinese Ann. Math. Ser. B 4, 307–318 (1983).MathSciNetMATHGoogle Scholar
  50. 50.
    Sheng Gong and Ji-Huai Shi, Singular integrals in several complex variables. III: Cauchy integrals of classical domains, Chinese Ann. Math. Ser. B 4, 467–484 (1983).MathSciNetMATHGoogle Scholar
  51. 51.
    Sheng Gong and Ji-Huai Shi, Singular integrals in several complex variables. IV: The derivatives of Cauchy integrals on balls, Chinese Ann. Math. Ser. B 5, 21–36 (1984).MathSciNetMATHGoogle Scholar
  52. 52.
    Sheng Gong and Ji-Guang Sun, The integral representation of holomorphic functions in a circular domain, J. Univ. Sci. Technol. in China 1, 219–226 (1965).Google Scholar
  53. 53.
    Sheng Gong and Ji-Guang Sun, The Cauchy type of several complex variables. I: The Cauchy type integral of a ball, Acta Math. 15, 431-. 443 (1965).Google Scholar
  54. 54.
    Sheng Gong and Ji-Guang Sun, The Cauchy type integral of several complex variables.Google Scholar
  55. II: The Cauchy type integral of the hyperbolic sphere of Lie spheres, Acta Math. Sinica 15, 775–799 (1965).Google Scholar
  56. 55.
    Sheng Gong and Ji-Guang Sun, The Cauchy type integral of several complex variables.Google Scholar
  57. III: The Cauchy type integral of hyperbolic space of matrices, Acta Math. Sinica 15, 800–811 (1965).Google Scholar
  58. 56.
    Sheng Gong and Ji-Guang Sun, On the singular integral equation on a sphere, Acta Math. Sinica 16, 194–210 (1966).MATHGoogle Scholar
  59. 57.
    K. T. Hahn, Inequality between the Bergman metric and Carathéodory differential metric, Proc. Am. Math. Soc 68, 193–194 (1978).MATHGoogle Scholar
  60. 58.
    F. R. Harvey and H. B. Lawson, On boundaries of complex analytic varieties. I, Ann. of Math 102, 223–290 (1975).MathSciNetMATHCrossRefGoogle Scholar
  61. 59.
    Wen-Hua He, The singular integral and the singular integral equations on a sphere, Math. J 4, 127–144 (1984).Google Scholar
  62. 60.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York (1962).MATHGoogle Scholar
  63. 61.
    G. M. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds, Akademie-Verlag, Berlin (1984).MATHGoogle Scholar
  64. 62.
    Zu-Qi Ho and Guang-Xiao Chen, The harmonic analysis on unitary group. I: The criterion of the convergency of a Fourier series, Math. Res. Rev 1, 29–41 (1981).Google Scholar
  65. 63.
    Yi Hong, Ding-Zhu Du, and Hong-Cang Yang, An inequality for convex functions, Kexue Tongbao, Foreign Land Ed. 27, 1266–1270 (1982).MATHGoogle Scholar
  66. 64.
    Yi Hong and Hong-Cang Yang, Hardy’s inequalities for a compact Riemann manifold, Kexue Tongbao 28, 1351–1354 (1983).Google Scholar
  67. 65.
    Yi Hong and Hong-Cang Yang, On the estimate of the first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A 27, 1265–1273 (1984) (in English).MathSciNetGoogle Scholar
  68. 66.
    Yi Hong and Hong-Cang Yang, Some generalization of Hardy’s inequality, Research Rep. Math. Sci. IMT-18 (1985).Google Scholar
  69. 67.
    Loo-Keng Hua, On the theory of automorphic functions of a matrix variable. I: Geometrical basis, Am. J. Math 66, 470–488 (1944) (in English).Google Scholar
  70. 68.
    Loo-Keng Hua, On the theory of automorphic functions of a matrix variable. II: The classification of hypercircles under the symplectic group, Am. J. Math 66, 531–563 (1944) (in English).CrossRefGoogle Scholar
  71. 69.
    Loo-Keng Hua, On the extended space of several complex variables I: The space of complex spheres, Quart. J. Math. Oxford Ser 17, 214–222 (1946) (in English).MathSciNetCrossRefGoogle Scholar
  72. 70.
    Loo-Keng Hua, Theory of Fuchsian functions of several complex variables, Ann. Math 47, 167–191 (1946) (in English).MATHCrossRefGoogle Scholar
  73. 71.
    Loo-Keng Hua, Introduction of the theory of vector modular forms, Akad. Nauk Azerbaidzan SSSR Trudy Inst. Fiz. Mat 3, 32–43 (1948) (in Russian).Google Scholar
  74. 72.
    Loo-Keng Hua, Theory of functions of several complex variables: I. A complete orthonormal system in the hyperbolic space of matrices, Acta Math. Sinica 4, 288–323 (1954).Google Scholar
  75. 73.
    Loo-Keng Hua, Theory of functions of several complex variables. II: A complete orthonor- mal system in hyperbolic space of hyperspheres, Acta Math. Sinica 5, 1–25 (1955).MathSciNetMATHGoogle Scholar
  76. 74.
    Loo-Keng Hua, On the estimation of the unitary curvature of the space of several variables, Sci. Sinica 4, 1–26 (1955) (in English).MATHGoogle Scholar
  77. 75.
    Loo-Keng Hua, On non-continuable domain with constant curvature, Sci. Sinica 4, 27–32 (1955) (in English).MATHGoogle Scholar
  78. 76.
    Loo-Keng Hua, On the theory of functions of several complex variables. A complete orthonormal system in the hyperbolic space of symmetric and antisymmetric matrices, Dokl. Akad. Nauk SSSR 101, (1955) (in Russian).Google Scholar
  79. 77.
    Loo-Keng Hua, On a system of partial differential equations, Sci. Record (N.S.) 1, 1–4 (1957).MATHGoogle Scholar
  80. 78.
    Loo-Keng Hua, A convergence theorem in the space of continuous functions on a compact group, Sci. Record (N.S.) 2, 280–284 (1958) (in English).MathSciNetGoogle Scholar
  81. 79.
    Loo-Keng Hua, Harmonic Analysis of Functions of Several Complex Variables in Classical Domains, Science Press, Beijing (1958); rev. ed., 1965; Russian trans]., Izd. Lit., Moskva ( 1959 ); English transi., American Mathematical Society, Providence, RI (1963).Google Scholar
  82. 80.
    Loo-Keng Hua, On Lavrentiev’s partial differential equation of mixed type, Sci. Sinica 13, 1755–1762 (1964).MathSciNetGoogle Scholar
  83. 81.
    Loo-Keng Hua, Starting with the Unit Circle, Science Press, Beijing ( 1977 ). English transi., Springer-Verlag, New York (1981).Google Scholar
  84. 82.
    Loo-Keng Hua and Qi-Keng Lu (=K. H. Look), On Cauchy formula for space of skew-symmetric matrices of odd order, Sci. Record (N.S.) 2, 19–22 (1958) (in English).MathSciNetGoogle Scholar
  85. 83.
    Loo-Keng Hua and Qi-Keng Lu (=K. H. Look), Boundary properties of the Poisson integral of Lie sphere, Sci. Record (N.S.) 2, 77–80 (1958) (in English).MathSciNetGoogle Scholar
  86. 84.
    Loo-Keng Hua and Qi-Keng Lu (=K. H. Look), Theory of harmonic functions of classical domains. I: Harmonic functions in the hyperbolic space of matrices, Acta Math. Sinica 8, 531–547 (1958).MathSciNetMATHGoogle Scholar
  87. 85.
    Loo-Keng Hua and Qi-Keng Lu (=K. H. Look), Theory of harmonic functions of classical domains. II: Harmonic functions in the hyperbolic space of the symmetric matrices, Acta Math. Sinica 9, 259–306 (1959).Google Scholar
  88. 86.
    Loo-Keng Hua and Qi-Keng Lu (=K. H. Look), Theory of harmonic functions of classical domains. III: Harmonic functions in the hyperbolic space of skew-symmetric matrices, Acta Math. Sinica 9, 306–314 (1959).MathSciNetMATHGoogle Scholar
  89. 87.
    Loo-Keng Hua and Qi-Keng Lu, Theory of harmonic functions in classical domains, Sci. Sinica 8, 1031–1094 (1959) (in English).MathSciNetMATHGoogle Scholar
  90. 88.
    Adam Koranyi, Analytic invariants of bounded symmetric domains, Proc. Am. Math. Soc 19, 279–284 (1968).Google Scholar
  91. 89.
    J. Leray, Le calcul différentiel et intégral sur une variété analytique complexe (problem de Cauchy III), Bull. Soc. Math. France 87, 81–180 (1959).MathSciNetMATHGoogle Scholar
  92. 90.
    Lun-Huan Li, The boundary properties of the integral representation of a non-degenerate Weil polyhedron, J. Xiaman Univ 25, 117–127 (1986).Google Scholar
  93. 91.
    Peter Li and Jia-Qing Zhong, Pinching theorem for the first eigenvalue on positively curved manifolds, Trans. Am. Math. Soc 294, 341–349 (1986).Google Scholar
  94. 92.
    Liang-Yu Liu, On the boundary properties of Cauchy type integral on piece-wise smooth manifolds, Acta Math. Sinica 31, 547–557 (1988).MathSciNetGoogle Scholar
  95. 93.
    Qi-Keng Lu (= K. H. Look), The unitary geometry and the theory of functions of complex variables, Progress in Math. 2, 587–662 (1956).Google Scholar
  96. 94.
    Qi-Keng Lu (=K. H. Look), Schwarz lemma in the theory of functions of several complex variables, Acta Math. Sinica 7, 370–420 (1957).MathSciNetGoogle Scholar
  97. 95.
    Qi-Keng Lu (=K. H. Look), An analytic invariant and its characteristic properties, Acta Math. Sinica 8, 243–252 (1958).Google Scholar
  98. 96.
    Qi-Keng Lu (=K. H. Look), Schwarz lemma and analytic invariants, Sci. Sinica 7, 453–504 (1958) (in English).MathSciNetGoogle Scholar
  99. 97.
    Qi-Keng Lu (=K. H. Look), A theorem about the inner holomorphic maps of classical domains, J. Xiaman Univ 4, 8–17 (1957).Google Scholar
  100. 98.
    Qi-Keng Lu (=K. H. Look), Slit space and extremal principle, Sci. Record (N.S.) 3, 289–294 (1959) (in English).MathSciNetGoogle Scholar
  101. 99.
    Qi-Keng Lu (=K. H. Look), Explicit formula of the infinitesimal connection for a continuous representation of GL(n, R), Sci. Record (N.S.) 3, 296–300 (1959) (in English).Google Scholar
  102. 100.
    Qi-Keng Lu (=K. H. Look), A study of the theory of functions of several complex variables in China during the last decade, Sci. Sinica 8, 1230–1237 (1959) (in English).Google Scholar
  103. 101.
    Qi-Keng Lu (=K. H. Look), An Introduction to the Theory of Functions of Several Complex Variables, Science Press, Beijing (1961).Google Scholar
  104. 102.
    Qi-Keng Lu (=K. H. Look), On a class of homogeneous complex manifolds, Sci. Sinica 11, 723–751 (1962) (in English).Google Scholar
  105. 103.
    Qi-Keng Lu (=K. H. Look), The Classical Manifolds and Classical Domains, Shanghai Press of Science and Technology, Shanghai (1963).Google Scholar
  106. 104.
    Qi-Keng Lu (=K. H. Look), The matrix representation of non-exceptional and irreducible Riemann global symmetric spaces (unpublished, 1963 ).Google Scholar
  107. 105.
    Qi-Keng Lu (=K. H. Look), The solution of a quadratic matrix equation and its geometrical meaning, J. Xiaman Univ 10, 89–134 (1953).Google Scholar
  108. 106.
    Qi-Keng Lu (=K. H. Look), The elliptic geometry of extended spaces, Acta Math. Sinica 13, 49–62 (1963).Google Scholar
  109. 107.
    Qi-Keng Lu (=K. H. Look), On the complete Kähler manifolds of constant unitary curvature, Acta Math. Sinica 16, 269–281 ( 1966 ); English transi., Chinese Mathematics (1966).Google Scholar
  110. 108.
    Qi-Keng Lu (=K. H. Look), On the Cauchy-Fantappié formula, Acta Math. Sinica 16, 344–363 ( 1966 ); English transi., Chinese Mathematics (1966).Google Scholar
  111. 109.
    Qi-Keng Lu (=K. H. Look), Gauge theory and the principal fibre bundle, Acta Phys. Sinica 23, 241–263 (1974).Google Scholar
  112. 110.
    Qi-Keng Lu (=K. H. Look), The estimation of the intrinsic derivatives of the holomorphic mappings of bounded domains, Sci. Sinica 22, 1–17 (1979).MathSciNetGoogle Scholar
  113. 111.
    Qi-Keng Lu (=K. H. Look), Differential Geometry and Its Application to Physics, Science Press, Beijing (1982).Google Scholar
  114. 112.
    Qi-Keng Lu (=K. H. Look), On the Schwarz lemma of higher order, in Proc. 1980 Beijing Symp. on Differential Geometry and Differential Equations vol. III, pp. 1308–1318, Science Publishers and Gordon & Breach, Beijing and New York (1982) (in English).Google Scholar
  115. 113.
    Qi-Keng Lu (=K. H. Look), A note on the extremum of the sectional curvature of a Kähler manifold, Sci. Sinica Ser. A 27, 367–371 (1983) (in English).Google Scholar
  116. 114.
    Qi-Keng Lu (=K. H. Look), On the representative domains, in Proc. 1981 Hangzhou Conf. on Several Complex Variables, Birkhauser, pp. 199–210 (1984) (in English).Google Scholar
  117. 115.
    Qi-Keng Lu (=K. H. Look), The classification of the curvature tensors of the Kähler manifolds, Chinese Quart. J. Math 2, 15–32 (1986) (in English).Google Scholar
  118. 116.
    Qi-Keng Lu (=K. H. Look), The Green forms and the Cauchy formulas on a Kähler manifold, Chinese Quart. J. Math 2, 1–11 (1987) (in English).Google Scholar
  119. 117.
    Qi-Keng Lu (=K. H. Look), The Green forms with respect to the intrinsic metric of a ball, Sci. Sinica (to appear).Google Scholar
  120. 118.
    Qi-Keng Lu (=K. H. Look), The heat kernel of a ball in C“, Research Memorandum, no. 18, vol. 3, Inst. of Math, Acad. Sinica (1987).Google Scholar
  121. 119.
    Qi-Keng Lu (=K. H. Look), The various kernels of classical domains and classical manifolds, in Reports in the Symposium dedicated to Professor L. K. Hua, Beijing (1988).Google Scholar
  122. 120.
    Qi-Keng Lu, Han-Ying Guo, and Ke Wu, A formulation of nonlinear gauge theory and its applications, Comm. Theor. Phys. (Beijing, China) 2, 1029–1038 (1983).Google Scholar
  123. 121.
    Qi-Keng Lu and Yi Hong, The heat kernel of the classical domain R1(m, n), preprint.Google Scholar
  124. 122.
    Qi-Keng Lu and Yong-Shi Wu, The right translation invariant metric and variational principles on a principal fibre bundle, in Proc. 1980 Quangzhou Conf. of Theoretical Particle Physics,pp.985–1005.Google Scholar
  125. 123.
    Qi-Keng Lu and Yi-Chao Xu, A note on transitive domains, Acta Math. Sinica 11, 11–23 (1961).Google Scholar
  126. 124.
    Qi-Keng Lu and Wei-Ping Yin, The solution of the Cauchy problem of a wave equation with variable coefficients, Chinese Ann. Math 1, 115–128 (1980).MathSciNetGoogle Scholar
  127. 125.
    Qi-Keng Lu and Jia-Qing Zhong, The realization of the homogeneous cone, Acta Math. Sinica 24, 117–142 (1981).Google Scholar
  128. 126.
    Qi-Keng Lu and Tong-De Zhong, The generalization of the Privalov theorem, Acta Math. Sinica 7, 144–165 (1957).MathSciNetGoogle Scholar
  129. 127.
    Ru-Qian Lu, On the harmonic functions on a class of non-symmetric transitive domains, Sci. Sinica 14, 315–324 (1965) (in English).Google Scholar
  130. 128.
    J. Milnor, Morse Theory, Princeton University Press, Princeton, 1963.MATHGoogle Scholar
  131. 129.
    J. Mitchell, Potential theory in the geometry of matrices, Trans. Am. Math. Soc 19, 401–422 (1955).CrossRefGoogle Scholar
  132. 130.
    Ngai-Ming Mok and Jia-Qing Zhong, Variétés compactes kähleriennes d’Einstein de courbure bisectionnelle semipositive, C. R. Acad. Sci. Paris, Ser. I, No. 12 299 (1984).Google Scholar
  133. 131.
    Ngai-Ming Mok and Jia-Qing Zhong, Curvature characterization of compact Hermitian symmetric spaces, J. Diff. Geom 23, 15–67 (1986). (Chapter 15 of this volume).Google Scholar
  134. 132.
    F. Norguet, Problem sur les formes differentielle et les courant, Ann. Inst. Fourier Grenoble 11, 1–82 (1961).MathSciNetMATHCrossRefGoogle Scholar
  135. 133.
    I. I. Pyatetski-Shapiro, On a problem proposed by É. Cartan, Dokl. Akad. Nauk SSSR 124, 272–273 (1959).MathSciNetGoogle Scholar
  136. 134.
    I. I. Pyatetski-Shapiro, The Geometry of Classical Domains and Theory of Automorphic Functions, Fitzmatgiz, Moskow (1961).Google Scholar
  137. 135.
    H. J. Reiben, Die Carathéodory Distanz und Ihre Zugehoerige Differential Metrik, Math. Ann 161, 315–324 (1965).MathSciNetCrossRefGoogle Scholar
  138. 136.
    A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with application to Dirichlet series, J. Ind. Math. Soc 20, 47–87 (1956).MathSciNetMATHGoogle Scholar
  139. Ji-Huai Shi, On the Cauchy integrals for the hypersphere, J. Univ. Sci. Technol. in China 10, 1–9 (1980).Google Scholar
  140. 138.
    Ji-Huai Shi, A new proof of the polydisc’s analysis nonequivalence to any ball, Kexue Tongbao 26, 952–953 (1981) (in English).Google Scholar
  141. Ji-Huai Shi, Approximating univalent analytic mappings of several complex variables by chains of subordinate polynomial mappings, J. Univ. Sci. Technol. in China 11,7–15 (1981).Google Scholar
  142. 140.
    Ji-Huai Shi, On the bound of convexity of univalent analytic maps of the ball, Kexue Tongbao 27, 473–476 (1982) (in English).Google Scholar
  143. 141.
    Ji-Huai Shi, Some applications of the Ryll-Wojtaszyk polynomial, Acta Math. Sinica (N.S.) 1, 359–365 (1985) (in English).MathSciNetMATHCrossRefGoogle Scholar
  144. Ji-Huai Shi, Two results of Bloch functions of several complex variables, J. Univ. Sci. Technol. in China 16, 147–152 (1986).Google Scholar
  145. 143.
    Ji-Huai Shi, On the rate of growth of the mean MP of holomorphic and pluriharmonic functions on bounded symmetric domains of C“, J. Math. Anal. Appl 126, 161–175 (1987).MathSciNetCrossRefGoogle Scholar
  146. 144.
    Ji-Huai Shi, Representations of linear functions on Lipschitz spaces Ao of functions holomorphic in the unit ball of C“, Chinese Ann. Math. Ser. A 8, 189–198 (1987).MathSciNetGoogle Scholar
  147. 145.
    Ji-Huai Shi, Hadamard products of functions holomorphic in the ball of C“, Chinese Ann. Math. Ser. A 9, 49–59 (1988).MathSciNetGoogle Scholar
  148. Ji-Huai Shi, The spaces HP(B“),0 4399 p 1, and B Pq (B“),0 p q 1, are not locally convex, Proc. Am. Math. Soc 103, 69–74 (1988).Google Scholar
  149. 147.
    Ji-Huai Shi, Coefficient multipliers of HP and Bpq spaces in the unit ball of C“, in Complex Variables Theory and Applications (to appear).Google Scholar
  150. 148.
    Ji-Huai Shi, Hardy-Littlewood theorem on bounded symmetric domains of C“, Sci. Sinica 31, 916–926 (1988).Google Scholar
  151. 149.
    Ji-Huai Shi, Mackey topologies of Hardy spaces and Bergman spaces of several complex variables, Kexue Tongbao 33, 881–884 (1988).Google Scholar
  152. 150.
    Ji-Huai Shi, Cesaro means of power series of several complex variables, Chinese Quart. J. Math (to appear).Google Scholar
  153. 151.
    C. L. Siegel, Symplectic geometry, Am. J. Math 65, 1–85 (1943).CrossRefGoogle Scholar
  154. 152.
    M. Skwarzinski, The distance in theory of pseudo-conformal transformations and the Lu Qi-Keng conjecture, Proc. Am. Math. Soc 22, 305–310 (1969).Google Scholar
  155. 153.
    Ji-Guang Sun, The harmonic functions on a class of bounded symmetric domains J. Univ. Sci. Technol. in China 2, 35–43 (1973)Google Scholar
  156. 154.
    Ji-Guang Sun, The singular integral equation on a closed smooth manifold Acta Math. Sinica 22, 675–692 (1979)Google Scholar
  157. 155.
    Ji-Guang Sun, The regulation of singular integral equations on a sphere, J. Xiaman Univ 18 (1979).Google Scholar
  158. Ji-Guang Sun, Perturbation theorems for generalized singular value J. Comput. Math.1, 233–242 (1983)Google Scholar
  159. 157.
    Ji-Guang Sun, Perturbation analysis for the generalized singular value problem, SIAM J. Numer. Anal 20, 611–625 (1983) (in English).MathSciNetCrossRefGoogle Scholar
  160. 158.
    H. C. Vinberg, Homogeneous cones, Dokl. Akad. Nauk SSSR, No. 1 133, 9–12 (1960).MathSciNetGoogle Scholar
  161. 159.
    Da-Ming Wang, The Carathéodory Metric of Classical Domains, Dissertation, Beijing (1962).Google Scholar
  162. 160.
    H. C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math 76, 1–33 (1954).MathSciNetMATHCrossRefGoogle Scholar
  163. 161.
    Shi-Kun Wang and Dao-Zhen Dong, Harmonic analysis on rotational group. I: The criterion of the convergency of a Fourier series, Chinese Ann. Math 4, 195–206 (1983).Google Scholar
  164. 162.
    Lanfang Wu and Yi-Chao Xu, Holomorphic sectional curvatures of homogeneous bounded domains, Kexue Tongbao 28, 393–396 (1983).Google Scholar
  165. 163.
    Yi-Chao Xu, On the group of holomorphic automorphisms of bounded positive (mp)circular domains Acta. Math. Sinica 13, 419–432 (1963) Google Scholar
  166. 164.
    Yi-Chao Xu, On the group of holomorphic automorphisms of bounded homogeneous domains, Acta Math. Sinica 19, 169–191 (1976).MathSciNetMATHGoogle Scholar
  167. 165.
    Yi-Chao Xu, On the holomorphic isomorphisms of bounded homogeneous domains Acta Math. Sinica 19, 248–266 (1976)Google Scholar
  168. 166.
    Yi-Chao Xu, On the Siegel domain of first kind over a square cone Acta Math. Sinica 21, 1–17 (1978)Google Scholar
  169. 167.
    Yi-Chao Xu, On the Bergman kernel functions of homogeneous bounded domains Sci. Sinica Special Issue II,80–90 (1979) (in English)Google Scholar
  170. 168.
    Yi-Chao Xu, The classification of square type domains, Sci. Sinica 22, 375–392 (1979) (in English).MathSciNetGoogle Scholar
  171. 169.
    Yi-Chao Xu, The invariant differential operators of order 2 in an N-Siegel domain, Acta Math. Sinica 25, 340–352 (1982).MathSciNetGoogle Scholar
  172. 170.
    Yi-Chao Xu, On homogeneous bounded domains, Sci. Sinica Ser. A 26, 25–34 (1983) (in English).MathSciNetMATHGoogle Scholar
  173. 171.
    Yi-Chao Xu, On the classification of homogeneous bounded domains, 1983 (unpublished).Google Scholar
  174. 172.
    Yi-Chao Xu, Classification of a class of homogeneous Kähler manifolds, Sci. Sinica 29, 449–463 (1986) (in English).Google Scholar
  175. 173.
    Yi-Chao Xu and De-Ling Wang, The classification of bounded semi-circular domains in C2, Acta Math. Sinica 23, 372–384 (1980).MathSciNetGoogle Scholar
  176. 174.
    Zong-Yuan Yao, On the B-M integral representation of first kind in C“, J. Xiaman Univ 26, 390–398 (1987).Google Scholar
  177. 175.
    Fang-Cao Ye, The conjugate points of the complex Grassmann manifold Acta Math. Sinica 21, 367–374 (1978)Google Scholar
  178. 176.
    Fang-Cao Ye, The invariant differential operators of NIRGSS. I-III, J. Xiaman Univ (to appear).Google Scholar
  179. 177.
    Wei-Ping Yin, The explicit solutions of the Cauchy problem for some hyperbolic equations Acta Math. Sinica 23, 102–117 (1980)Google Scholar
  180. 178.
    Wei-Ping Yin, The Riemann functions of a class of hyperbolic equations, J. China Univ. Technol 10, 117–128 (1980).Google Scholar
  181. 179.
    Wei-Ping Yin, A note to Poisson kernel, Kexue Tongbao 26, 581–583 (1981).Google Scholar
  182. 180.
    Wei-Ping Yin, Two problems on bounded homogeneous domains J. Univ. Sci. Technol. in China 16, 241–247 (1986)Google Scholar
  183. Wei-Ping Yin, Two problems on Cartan domains, J. Univ. Sci. Technol. in China 16, 130–156 (1986).Google Scholar
  184. Wei-Ping Yin, A special function on non-self-dual cones, J. Univ. Sci. Technol. in China 16, 367–384 (1986).Google Scholar
  185. 183.
    Wei-Ping Yin, A characterization of bounded symmetric domains, Kexue Tongbao 31, 9–11 (1987).Google Scholar
  186. 184.
    Wei-Ping Yin, The curvature of nonsymmetric Siegel domain of the first kind J. Univ. Sci. Technol. in China 17, 1–16 (1987)Google Scholar
  187. 185.
    Wei-Ping Yin, Invariant metrics and functions of Reinhardt domains, Kexue Tongbao 33, 329–332 (1987).Google Scholar
  188. 186.
    Wei-Ping Yin, The Kähler geometry of Reinhardt domains, Kexue Tongbao 32, 876–877 (1987).Google Scholar
  189. 187.
    Wei-Ping Yin, Some remarks on certain Reinhardt domain, Progress in Math. 17, 206–207 (1988).Google Scholar
  190. 188.
    Wei-Ping Yin, The curvature and group invariant functions of a class of domains, Sci. Sinica Ser. A 12, 1245–1257 (1988).Google Scholar
  191. 189.
    Wei-Ping Yin, The unitary geometry of nonsymmetric homogeneous Siegel domains of the first type (I), (II), (III) Acta Math. Sinica 24, 753–764,764–779,879–891 (1981)Google Scholar
  192. 190.
    Wei-Ping Yin, Some notes on extension spaces, J. Univ. Sci. Technol. of China 12, 13–19 (1982).Google Scholar
  193. 191.
    Wei-Ping Yin, Some results on the nonsymmetric Siegel domains and explicit solutions of some partial differential equations, in: Proc. 1980 Beijing Symp. on Differential Geometry and Differential Equations, pp. 1681–1694, Science Press, Beijing (1982) (in English).Google Scholar
  194. 192.
    Wei-Ping Yin, On the group of analytic automorphisms of Cartan domains, J. Univ. Sci. Technol. of China 17, 291–302 (1987).Google Scholar
  195. 193.
    Wei-Ping Yin, The Aut (D)-invariant harmonic functions Chinese Ann. Math.to appearGoogle Scholar
  196. 194.
    Wei-Ping Yin, Some new phenomena on bounded nonhomogeneous domains Acta Math. Sinica,to appearGoogle Scholar
  197. 195.
    Qi-Huang Yu and Jia-Qing Zhong, Lower bounds of the gap between the first and second eigenvalues of the Schroedinger operator, Trans. Am. Math. Soc 296, 342–349 (1986).Google Scholar
  198. 196.
    Jin-Hao Zhang, Coefficient problem of holomorphic mappings on Reinhardt domains, Kexue Tongbao 25, 103–108 (1980).Google Scholar
  199. 197.
    Jin-Hao Zhang, On the limit of coefficient problem on star-like mapping, J. Fudan Univ 24, 65–72 (1985).Google Scholar
  200. 198.
    Jin-Hao Zhang, The S metric on holomorphy domain, Kexue Tongbao 33, 353–356 (1986).Google Scholar
  201. 199.
    Jin-Hao Zhang, Subelliptic estimates and vanishing theorems of some cohomology groups Acta Math. Sinica New Ser. 2, 57–72 (1986) (in English)Google Scholar
  202. 200.
    Jin-Hao Zhang, Chem-Levine-Nirenberg norm on homology class, Northeastern Math. J 3, 429–438 (1987) (in English).Google Scholar
  203. 201.
    Jin-Hao Zhang, Cohomology vanishing theorem and finitely generated ideals in functional algebras, Acta Math. Sinica New Ser 4, 1–4 (1988) (in English).CrossRefGoogle Scholar
  204. 202.
    Jia-Qing Zhong, The group of automorphisms of the hyperbolic space of skew-symmetric matrices, J. Peking Univ 8, 226–244 (1962).Google Scholar
  205. Jia-Qing Zhong, On the group of motions of the extension spaces of the classical domains of type I, J. Univ. Sci. Technol. in China 1, 229–238 (1965).Google Scholar
  206. 204.
    Jia-Qing Zhong, A class of integral determinants and their applications to the representation theory of groups, Acta Math. Sinica 19, 88–106 (1976).MathSciNetMATHGoogle Scholar
  207. 205.
    Jia-Qing Zhong, Harmonic analysis on rotation groups, Abel summability, J. Univ. Sci. Technol. in China 7,31–43 (1979) (Chapter 4 of this volume).Google Scholar
  208. 206.
    Jia Qing Zhong, Coxeter-Killing transformations of simple Lie algebras, Acta Math. Sinica 22, 291–302 (1979) (Chapter 5 of this volume).Google Scholar
  209. 207.
    Jia-Qing Zhong, Dimensions of the rings of invariant differential operators on bounded homogeneous domains, Acta Math. Sinica 23, 261–272 (1980).Google Scholar
  210. 208.
    Jia-Qing Zhong, On prime ideals of the ring of differential operators, Chinese Ann. Math 1, 259–374 (1980) (Chapter 7 of this volume).Google Scholar
  211. 209.
    Jia-Qing Zhong, On the sum of class functions of Weyl groups, Acta Math. Sinica 23, 695–711 (1980) (Chapter 8 of this volume).Google Scholar
  212. 210.
    Jia-Qing Zhong, The trace formula of the Weyl group representations of the symmetric group, Acta Math. Sinica 23, 836–850 (1980) (Chapter 9 of this volume).Google Scholar
  213. 211.
    Jia-Qing Zhong, The Siegel-Godement transformations on positive Hermitian cones, Acta Math. Sinica 25, 236–243 (1982).MathSciNetGoogle Scholar
  214. 212.
    Jia-Qing Zhong, A note on Schubert calculus, in Proc. 1980 Beijing Symp. on Differential Geometry and Differential Equations, vol. III, pp. 1697–1708, Science Publishers, Beijing (1981) (in English).Google Scholar
  215. 213.
    Jia-Qing Zhong, The degree of strong non-degeneracy of the bisectional curvature of the exceptional bounded symmetric spaces, in Several Complex Variables,pp. 127–139 (Proc. 1981 Hangzhou Conf.), Birkhauser (1984) (in English) (Chapter 13 of this volume).Google Scholar
  216. 214.
    Jia-Qing Zhong, The Busemann function of the classical domains, Acta Math. Sinica,to appear.Google Scholar
  217. 215.
    Jia-Qing Zhong, The Schubert calculus and the theory of group representations, Sci. Sinica,to appear.Google Scholar
  218. 216.
    Jia-Qing Zhong and Hong-Cang Yang, On the estimate of the first eigenvalue of a compact Riemann manifold, Sci. Sinica 27, 1265–1273 (1984) (in English) (Chapter 14 of this volume).Google Scholar
  219. 217.
    Jia-Qing Zhong and Wei-Ping Yin, Some classes of non-symmetric homogeneous domains, Acta Math. Sinica 24, 587–613 (1981).MathSciNetMATHGoogle Scholar
  220. 218.
    Jia-Qing Zhong and Wei-Ping Yin, The extension spaces of non-symmetric homogeneous domains, Acta Math. Sinica 24, 931–947 (1981) (Chapter 11 of this volume).Google Scholar
  221. 219.
    Tong-De Zhong, On pseudo-analytic vector fields on a pseudo-hermitian manifold, J. Xiaman Univ 1, 93–102 (1957).Google Scholar
  222. 220.
    Tong-De Zhong, On the boundary properties of the Cauchy type integral of several complex variables, Acta Math. Sinica 15, 227–241 (1965).Google Scholar
  223. 221.
    Tong-De Zhong, The composite formula of singular integral equation on the characteristic manifold, J. Xiaman Univ 17, 1–13 (1978).Google Scholar
  224. 222.
    Tong-De Zhong, The singular integral equation of a smooth manifold, J. Xiaman Univ 18, 1–8 (1979).Google Scholar
  225. 223.
    Tong-De Zhong, The transposed formula of the singular integral of Bochner-Martinelli kernel, Acta Math. Sinica 23, 538–550 (1980).Google Scholar
  226. 224.
    Tong-De Zhong, The regulation of the singular integral equation on a characteristic manifold, Kexue Tongbao 23, 667–668 (1981); J. Xiaman Univ 20, 1–6 (1981).MATHGoogle Scholar
  227. 225.
    Tong-De Zhong, Singular integral equations with Bochner-Martinelli kernel on smooth orientable manifolds, in Proc. 1980 Beijing Symp. on Differential Geometry and Differential Equations, vol. III, pp. 1709–1711, Science Press, Beijing (1982) (in English).Google Scholar
  228. 226.
    Tong-De Zhong, Some applications of Bochner-Martinelli integral representation in Several Complex Variables,217–225 (Proc. 1981 Hangzhou Conf.), Birkhauser (1984)Google Scholar
  229. 227.
    Tong-De Zhong The Integral Representation and the Singular Integral Equation of Multi-dimensions,Xiaman Univ. Press (1986)Google Scholar
  230. 228.
    Tong-De Zhong, The integral representation of holomorphic functions on a Stein manifold, J. Xiaman Univ 26, 385–389 (1987).Google Scholar
  231. 229.
    Tong-De Zhong, The Andreotti-Norguet formula on a Stein manifold and its generalization, J. Xiaman Univ 26, 641–643 (1987).Google Scholar
  232. 230.
    Tong-De Zhong, Holomorphic extension on Stein manifold, Research Report No. 10, Mittag-Leffier Institute (1987).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Qi-Keng Lu
    • 1
  1. 1.Institute of MathematicsAcademia SinicaBeijingPeople’s Republic of China

Personalised recommendations