An Expansion in Schur Functions and Its Applications in Enumerative Geometry

  • Hung-Hsi Wu
Part of the The University Series in Mathematics book series (USMA)


This chapter presents a method for calculating the coefficient \({{c}_{\left( {{\lambda }_{1,...,{{\lambda }_{n}}}} \right)}}\) for the expansion of polynomial powers of Schur functions
$$(x_{1}^{k}+\cdot \cdot \cdot +x_{n}^{k})=\sum{{{C}_{({{\lambda }_{1}},\cdot \cdot \cdot ,{{\lambda }_{n}})}}}{{S}_{({{\lambda }_{1}},\cdot \cdot \cdot ,{{\lambda }_{n}})}}({{X}_{1}},\cdot \cdot \cdot ,{{x}_{n}})$$
and applies it to the discussion of some problems of enumerative geometry.


Algebraic Geometry Formal Power Series Grassmann Manifold Plane Parti Plane Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York (1978).MATHGoogle Scholar
  2. 2.
    W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. 2, Cambridge, University Press (1952).MATHGoogle Scholar
  3. 3.
    L.-K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Science Press, Beijing (1965).Google Scholar
  4. 4.
    S. Kleiman, Problem 15, Rigorous Foundation of Schubert Enumerative Calculus, Proc. Symp. Pure Math., vol. 27, American Mathematical Society, Providence, RI (1976).Google Scholar
  5. 5.
    R. Stanley, Theory and applications of plane partitions. I, Stud. Appl. Math. 50, 167–188 (1971).MathSciNetMATHGoogle Scholar
  6. 6.
    J.-Q. Zhong, Schubert calculus and Schur functions, Zhong Gua Kexue Ser (in Chinese) (Chapter 16 of this volume).Google Scholar
  7. 7.
    J.-Q. Zhong, A note on Schubert calculus, in Proc. 1980 Beijing Symp. Differential Geometry and Differential Equations, Vol. 3, pp. 1697–1708 (S. S. Chern et al., eds.), Science Press, Beijing; Gordon and Breach, New York (1982).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Hung-Hsi Wu
    • 1
  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations