Cohomology of Extension Spaces for Classical Domains

  • Hung-Hsi Wu
Part of the The University Series in Mathematics book series (USMA)


The Grassmann manifolds are considered to be the most important and canonical examples in compact Kähler manifolds. The Grassmann manifold G(m + n, n) consists of the set of all n-dimensional linear subspaces in ℂ m+n , and can be realized as
$$G\left( M+n,n \right)=\left\{ \Im \left| \Im anm\times \left( m+n \right)matrix,rank\Im =m,{{\Im }_{1}}\sim {{\Im }_{2}}\Leftrightarrow {{\Im }_{1}}=Q{{\Im }_{2}},\det Q\ne 0 \right. \right\}.$$


Vector Bundle Symmetric Polynomial Grassmann Manifold Extension Space Classical Domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Atiyah, Complex analytic connections in fiber bundles, Trans. Amer. Math. Soc. 85, 181–207 (1957).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    J. Carrell, Chern classes of the Grassmannians and Schubert calculus, Topology 17 (2), 177–183 (1978).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    J. Carrell and D. Lieberman, Holomorphic vector fields and Uhler manifolds, Invent. Math. 21, 303–309 (1973).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    J. Carrell and D. Lieberman, Vector fields and Chern numbers, Math. Ann. 225, 263–273 (1977).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York (1978).MATHGoogle Scholar
  6. 6.
    L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in Classical Domains, Vol. 6 of Transi. Math. Monographs, Amer. Math. Soc., Providence, RI (1963).Google Scholar
  7. 7.
    Lu Qi-Keng (K.-H. Look), Classical Domains and Classical Manifolds, Scientific Publishers, Shanghai (1963) (in Chinese).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Hung-Hsi Wu
    • 1
  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations