A Genetic Approach to the Study of Juvenile Hormone Control of Vitellogenesis in Drosophila melanogaster

  • J. H. Postlethwait
  • A. M. Handler
  • P. W. Gray


Juvenile hormone (JH) is a key agent in the regulation of insect development, and thus it must effect proper gene management during ontogeny. How this occurs is as yet a mystery, but JH can alter chromosome function as assayed by puffing in polytene chromosomes of Diptera (Lezzi and Gilbert, 1969) and models based on gene regulation have been presented for its action (Williams and Kafatos, 1971). Therefore it seems appropriate to approach the study of JH action from a genetic standpoint. Mutant genes causing defects in JH action in Drosophila might be expected to develop lethal morphogenetic irregularities during embryonic, larval, or pupal stages (Dearden, 1964; Bryant and Sang, 1968; Ashburner, 1970; Madhavan, 1973; Postlethwait, 1974). Studying the biochemistry of these moribund animals might reveal only frustrating artifacts. A more convenient system might involve a tissue which responds to JH but which is unnecessary for the individual’s survival. For example, in many insects JH is required for some step in oogenesis (see Doan, 1973; Engelmann, 1970). A genetic approach to the hormonal control of oogenesis in Drosophila seems appropriate due to several factors. Drosophila females can lay up to 60% of their weight per day in eggs (King et al., 1955; David et al., 1968), which indicates the prodigious biosynthetic activity directed toward oogenesis. Furthermore, the ultrastructure of normal oogenesis has been very carefully described by King (1970). Finally, a great many female sterile mutants are known (King and Mohler, 1975). Our investigation exploits these properties to approach the following three points regarding JH control of oogenesis: (1) What is the endocrinology of oogenesis in Drosophila melanogaster? (2) How are female sterile mutants altered in JH action? (3) How does JH act to control the appearance of specific proteins in developing oocytes?


Acid Phosphatase Juvenile Hormone Acid Phosphatase Activity Mature Oocyte Corpus Allatum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashburner, M., 1970, Nature 227: 187.PubMedCrossRefGoogle Scholar
  2. Bakken, A.H., 1973, Dev. Biol. 33: 100.PubMedCrossRefGoogle Scholar
  3. Bell, J., and MacIntyre, R., 1973, Biochem. Genet. 10: 39.PubMedCrossRefGoogle Scholar
  4. Bodenstein, D., 1947, J. Exptl. Zool. 104: 101.CrossRefGoogle Scholar
  5. Bouletreau-Merle, J., 1973, C.R. Acad. Sci. Paris 277: 2045.Google Scholar
  6. Bryant, P., and Sang, J., 1968, Nature 220: 393.PubMedCrossRefGoogle Scholar
  7. Butterworth, F., and King, R., 1965, Genetics 52: 1153.PubMedGoogle Scholar
  8. Chan, L., and Gehring, W., 1971, Proc. Nat. Acad. Sci. USA 68: 2217.PubMedCrossRefGoogle Scholar
  9. David, J., and Merle, J., 1968, Dros. Inf. Serv. 43: 122.Google Scholar
  10. Dearden, M., 1964, J. Insect Physiol. 10: 195.CrossRefGoogle Scholar
  11. Doane, W., 1973, in “Developmental Systems: Insects) (S.J. Counce and C.H. Waddington, eds.), Vol. 2, pp. 291–497, Academic Press, London.Google Scholar
  12. Englemann, F., 1970, “The Physiology of Insect Reproduction”, Pergamon Press, Oxford.Google Scholar
  13. Gelti-Douka, H., Gingeras, T., and Kambysellis, M., 1974, J. Exptl. Zool. 187: 167.CrossRefGoogle Scholar
  14. Giorgi, F., 1974, Histochem. J. 6: 71.Google Scholar
  15. Kambysellis, M., and Heed, W., 1974, J. Insect Physiol. 20: 1779.PubMedCrossRefGoogle Scholar
  16. King, R.C., 1970, “Ovarian Development in Drosophila melanogaster”, Academic Press, New York.Google Scholar
  17. King, R., and Bodenstein, D., 1965, Z. Naturforsch. 20B: 292.Google Scholar
  18. King, R., and Mohler, J., 1975, in “Handbook of Genetics” (R.C. King, ed.), Vol. 3, Plenum Press.Google Scholar
  19. King, R., and Wilson, L., 1955, J. Exp. Zool. 130: 71.CrossRefGoogle Scholar
  20. Lezzi, M., and Gilbert, L.I., 1969, Proc. Nat. Acad. Sci. USA 64: 498.Google Scholar
  21. Maclntyre, R., 1966, Genetics 53: 461.Google Scholar
  22. Madhavan, K., 1973, J. Insect Physiol. 19: 441.PubMedCrossRefGoogle Scholar
  23. Mahowald, A., 1972, J. Morphol. 137: 29.PubMedCrossRefGoogle Scholar
  24. Manning, A., 1967, Anim. Behay. 15: 239.CrossRefGoogle Scholar
  25. Morrison, W.J., 1973, The Isozyme Bulletin 6: 13.Google Scholar
  26. Postlethwait, J.H., 1974, Biol. Bull. 147: 119.PubMedCrossRefGoogle Scholar
  27. Postlethwait, J., and Gray, P., 1975, Devel. Biol. 47: 196.CrossRefGoogle Scholar
  28. Postlethwait, J., and Weiser, K., 1973, Nature New Biol. 244: 284.PubMedCrossRefGoogle Scholar
  29. Safranek, L., and Riddiford, L., 1975, J. Insect Physiol. 21: 1931.CrossRefGoogle Scholar
  30. Sahota, T.S., 1975, J. Insect Physiol. 21: 471.CrossRefGoogle Scholar
  31. Sawicki, J., and Maclntyre, R., 1975, The Isozyme Bulletin 8: 35c.Google Scholar
  32. Schneiderman, H., 1967, in “Methods in Developmental Biology”, (F. Wilt and N. Wessells, eds.), pp. 753–766, Crowell, New York.Google Scholar
  33. Skopik, S., and Pittendrigh, C., 1967, Proc. Nat. Acad. Sci. USA 58: 1862.PubMedCrossRefGoogle Scholar
  34. Spieth, H.T., 1966, Anim. Behay. 14: 226.CrossRefGoogle Scholar
  35. Ursprung, H., 1967, in “Methods in Developmental Biology” (F. Wilt and N. Wessels, eds.), pp. 485–492, Crowell, New York.Google Scholar
  36. Vogt, M., 1943, Biol. Zentr. 63: 467.Google Scholar
  37. deWilde, J., and deLoof, A., 1973, in “The Physiology of Insecta”, (M. Rockstein, ed.), Vol. 1 (2nd ed.), pp. 97–158, Academic Press, New York.Google Scholar
  38. Williams, C.M., and Kafatos, F., 1971, Mit. Schweiz. Entomol. Ges. 44: 151.Google Scholar
  39. Yao, T., 1950, Quart, J. Microsc. Sci. 91: 79.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • J. H. Postlethwait
    • 1
  • A. M. Handler
    • 1
  • P. W. Gray
    • 1
  1. 1.Department of BiologyUniversity of OregonEugeneUSA

Personalised recommendations