Large Scale Validation of a Bi-Gaussian Dispersion Model in a Multiple Source Urban and Industrial Area

  • G. Cosemans
  • J. Kretzschmar
  • G. De Baere
  • J. Vandervee
Part of the NATO · Challenges of Modern Society book series (NATS, volume 3)


Gent, a moderate sized city of 300.000 habitants in the north of Belgium, is situated at the southern end of the sea-channel Gent-Terneuzen. On both sides of the channel, over a length of 15 km, an industrial zone has grown with a variety of activities such as electricity generation, oil refineries, metallurgical and chemical plants. The region around the city, world-famous for its flowers and plants, counts many greenhouses whereof the heating brings considerable quantities of SO2 in the ambient air. Within the framework of the National R & D Programme Environment-Air, a detailed inventory of the emissions in this region has been made by several groups of researchersl.


Wind Speed Wind Direction Space Heating Wind Sector Gent Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Emissieregistratie-Lucht Zone Gent-Zelzate”, National R and D Programme Environment-Air, DPWB, Brussel (1980).Google Scholar
  2. 2.
    A. Lafontaine, J. Bouquiaux, G. Verduyn, M. Legrand and T. De Rijck, “belgisch Automatisch Meetnet voor Luchtverontreiniging.” Jaarrapport 1978, IHE, Brussel (1980).Google Scholar
  3. 3.
    Working Group Mathematical Models. “IFDM, The Immission Frequency Distribution Model”, S.C.K./C.E.N., Mol (1977).Google Scholar
  4. 4.
    J.G. Kretzschmar, G. De Baere and J. Vandervee, The Immission Frequency Distribution Model of the S.C.K./C.E.N., Mol, Belgium, in: “Modeling, Identification and Control in Environmental Systems”, Vansteenkiste, ed., North-Holland Publ.Co. (1978).Google Scholar
  5. 5.
    J.G. Kretzschmar, G. De Baere, J. Vandervee, Validation of the Immission Frequency Distribution Model in the Region of Antwerp, Belgium, in: “Proceedings of the seventh International Technical Meeting on Air Pollution Modeling and its Applications”, Nato CCMS, (1976).Google Scholar
  6. 6.
    H. Bultynck and L. Malet, Evaluation of the atmospheric dilution factors for effluents diffused from an elevated continuous point source, Tellus, 24: 455 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    H. Stümke, Vorschlag einer empirischen Formel für die Schornsteinüberhöhung, Staub, 23: 549 (1963).Google Scholar
  8. 8.
    Nato Modeling Panel, Practical demonstration of Urban Air Quality Simulation Models, part II, Nato CCMS (1978).Google Scholar
  9. 9.
    Luchtverontreiniging door CS2 to Gent“, IHE, Dienst Lucht, Brussel (1980).Google Scholar
  10. 10.
    J.G. Kretzschmar and G. Cosemans, Random sampling against continuous monitoring for air quality monitoring systems, in: “Atmospheric Pollution”, M. Benarie ed. Elsevier, Amsterdam (1980).Google Scholar
  11. 11.
    J.G. Kretzschmar and G. Cosemans, Random-and Minimax-Campaigns for the determination of the actual air pollution levels in an unknown region, Atmospheric Environment 15: 1047 (1981)CrossRefGoogle Scholar
  12. 12.
    A. Junker, Statistische Auswertung von Messwertkollektiven zur Ermitlung von Kenngrössen-Perzentil-Schätzung, Staub-Reinhalt. Luft 36: 253 (1976).Google Scholar
  13. 13.
    J. Juda, Planung und Auswertung von Messungen der Veruntreinigungen in der Luft, Staub-Reinhalt.Luft 28: 186 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • G. Cosemans
    • 1
  • J. Kretzschmar
    • 1
  • G. De Baere
    • 1
  • J. Vandervee
    • 1
  1. 1.Nuclear Energy Research CentreMolBelgium

Personalised recommendations