A Comparison between Chemically Reacting Plume Models and Windtunnel Experiments

  • P. J. H. Builtjes
Part of the NATO · Challenges of Modern Society book series (NATS, volume 3)


Experiments have been carried out in a windtunnel of a chemically reacting plume. A NO-plume in an O3-environment has been studied and the conversion from NO to NO2 has been determined.

Based on the results from these experiments and existing field studies, a critical review of chemically reacting plume models has been carried out.

It is shown that in principle these models should take into account the effect of inhomogeneous mixing and the correlation between concentration fluctuations.


Wind Tunnel Atmospheric Boundary Layer Wind Tunnel Experiment Correlation Term Plume Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Builtjes, P. J. H. and Vermeulen, P. E. J.: “Atmospheric boundary layer simulation in the PIA and MIA wind tunnels of TNO-Apeldoorn” - TNO - Rep. 80: 0290 (1980).Google Scholar
  2. 2.
    Cermak, S.E.: “Laboratory simulation of the atmospheric boundary layer” AIAA - Journal Vol. 9, 9, 1746 (1971).Google Scholar
  3. 3.
    Cocks, A. T. and Fletcher, I. S.: “A model of the gas-phase chemical reactions of power station plume constituents” - CERL - Rep. RD/L/R 1999 (1979).Google Scholar
  4. 4.
    Cole, H. S. and Summerhays, J. E.: “A review of techniques available for estimating short-term NO2-concentrations”–J. of the Air Poll. Conts. Ass. 29,8, 812–817 (1979).Google Scholar
  5. 5.
    Donaldson, C. du P. and Hilst, G. R.: “Effect of inhomogeneous mixing on atmospheric photochemical reactions” - Environ. Sci. Techn. 6, 812 (1972).CrossRefGoogle Scholar
  6. 6.
    Elshout, A. J. e.a.: “The oxidation of NO in plumes”–Elektrotechniek 56, 429–437 (1978) in Dutch.Google Scholar
  7. 7.
    Forney, L. T. and Giz, Z. G.: “Fast reversible reactions in power plant plumes: application to the nitrogen dioxide photolytic cycle” - Atm. Env. 15, 345 (1981).CrossRefGoogle Scholar
  8. 8.
    Freiberg J.: “Conversion limit and characteristic time of SO2 oxidation in plumes” - Atm. Env. 12, 339 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    Guicherit, R. e.a.: “Conversion rate of nitrogen oxides in a polluted atmosphere” 11-th Int. Tech. Meeting on Air Pollution Modelling and its Application, pg. 378, Amsterdam (nov. 1980 ).Google Scholar
  10. 10.
    Hegg, D. e.a.: “Reactions of ozone and nitrogen oxides in power plant plumes” Atm. Env. 11, 521–526 (1977).CrossRefGoogle Scholar
  11. 11.
    Hegg, D. A. and Hobbs, P. V.: “Measurements of gas-to-particle conversion in the plumes from five coalfired electrical power plants” - Atm. Env. 14, 99 (1980).CrossRefGoogle Scholar
  12. 12.
    Hill, J. C.: “Homogeneous turbulent mixing with chemical reaction” - Chapter from “Turbulent Chemical Reactions”, 1976.Google Scholar
  13. 13.
    Hinze, J. O.: “Turbulence” - 2nd Ed. Mc Grawhill (1975)Google Scholar
  14. 14.
    Isaksen, I. S. A. e.a.: “A chemical model for urban plumes: test for ozone and particulate sulfur formation in St. Louis urban plume” - Atm. Env. 12. 599 (1978).CrossRefGoogle Scholar
  15. 15.
    Janicke, J. and Kollman, W.: “Ein Rechenmodell für reagierende turbulente Schertströmungen in chemischen Nichtgleichgewicht”–Wärme-und Stoffübertragung 11 157–174 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    Kewley, D. J.: “Atmospheric dispersion of a chemically reacting plume” Atm. Env. 12, 1895–1900 (1978).CrossRefGoogle Scholar
  17. 17.
    Lamb, R. G. and Shu, W. R.: “A model for second-order chemical reactions in turbulent fluid” Part 1 “Formulation and validation”–Atm. Env. 12, 1685–1694 (1978).CrossRefGoogle Scholar
  18. 18.
    Lamb, R. G. and Richards, L. W.: Discussion in Atm. Env. 13, 1473 (1979).Google Scholar
  19. 19.
    Libby, P. A. and Williams, F. A.: “Turbulent reacting flows” - Topics in Applied Physics Vol. 44, Springer-Verlag Berlin (1980).Google Scholar
  20. 20.
    Liu, M. K.: “Development of a mathematical model for simulating power plant plumes” - 4th Int. Clean Air Congress, Tokyo, Japan (1977).Google Scholar
  21. 21.
    Liu, M. K. e.a.: “An improved version of the reactive plume model (RPM-II)” 9th Int. Technical Meeting on Air Pollution and its Application, Toronto, Canada (Aug. 1978).Google Scholar
  22. 22.
    Lusis, M.: “Mathematical modelling of chemical reactions in a plume” 7th Int. Technical Meeting on Air Pollution and its Application, Airlie, Virgina, USA (Sept. 1976).Google Scholar
  23. 23.
    Lusis, M.: “Mathematical modelling of dispersion and chemical reactions in a plume-oxidation of NO to NO2 in the plume of a power plant”–Atm. Env. 12, 1231–1234 (1978).CrossRefGoogle Scholar
  24. 24.
    Lusis, M. e.a.: “Plume chemistry studies at a Northern Alberta power plant” Atm. Env. 12, 2429–2437 (1978).CrossRefGoogle Scholar
  25. 25.
    Murthy, S. N. B.: “Turbulent mixing in nonreactive and reactive flows” Plenum Press (1975).Google Scholar
  26. 26.
    O’Brien, F. E.: “Closure for stochastically distributed second-order reactants” Physics of Fluids 11, 9, 1883–1888 (1968).MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Parungo, F. P. e.a.: “Chemical characteristics of oil refinery plumes in Los Angeles” Atm. Env. 14, 509 (1980).CrossRefGoogle Scholar
  28. 28.
    Pasquill, F.: “Atmospheric Diffusion” - 2nd Ed. Ellis Horwood (1974).Google Scholar
  29. 29.
    Patterson, G. K.: “Modelling complex chemical reactions in flows with turbulent diffusive mixing” - AICHE 70th Annual Meeting, New-York (Nov. 1977).Google Scholar
  30. 30.
    Patterson, G. K.: “Closure approximations for complex multiple reactions” - Second Symp. on Turbulent Shear Flow, London (July 1979).Google Scholar
  31. 31.
    Peters, L. K. and Richards, L. W.: “Extension of atmospheric dispersion models to incorporate fast reversible reactions”–Atm. Env. 11, 101–108 (1977).CrossRefGoogle Scholar
  32. 32.
    Shu, W. R. e.a.: “A model of second-order chemical reactions in turbulent fluid” Part II. “Application to atmospheric plumes”–Atm. Env. 12, 1695–1704 (1978).CrossRefGoogle Scholar
  33. 33.
    Snijder, W. H.: “Similarity criteria for the application of fluid models to the study or air pollution meteorology” - Bound. Lay. Met. 3, 113 (1972).CrossRefGoogle Scholar
  34. 34.
    Spalding, D. B.:Combust. Sci. Techn. 13, 3 (1976).Google Scholar
  35. 35.
    Tesche, T. W. e.a.: “Theoretical, numerical and physical techniques for characterizing power plant plumes ”–EC-144 EPRI Project 572–2 (February 1976).Google Scholar
  36. 36.
    Tesche, T. W. e.a.: “Determination of the feasibility of ozone formation in power plant plumes ” - EPRI EA-307 (November 1976).Google Scholar
  37. 37.
    Varey, R. H. e.a.: “The oxidation of nitric oxide in power station plumes, a numerical model” - CERL, Laboratory Note RD/L/N 184 /78 (1978).Google Scholar
  38. 38.
    White, W. H.: “NO x-03 Photochemistry in power plant plumes: Comparison of theory with observation” - Env. Sc. and Techn. 11, 10, 995–1000 (1977) - A, C2.Google Scholar
  39. 39.
    White, W. H. and Lamb, R. G.: Discussion in Atm. Env. 13, 1471 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • P. J. H. Builtjes
    • 1
  1. 1.MT/TNOApeldoornThe Netherlands

Personalised recommendations