Advertisement

The Pseudo-Spectral Technique in the Computation of Seasonal Average Concentrations and Its Comparison with the Trajectory Technique

  • B. D. Murphy
Part of the NATO · Challenges of Modern Society book series (NATS, volume 3)

Abstract

Since there is now a greater awareness of the chronic effects of exposure to low levels of atmospheric pollutants, the long-range transport of atmospheric material is receiving increasing attention in recent years. Furthermore, there is the concern about the effects of successor species which come about by, for instance, chemical transformation or radioactive decay of the primary species during transport in the atmosphere. Concentrations of successor species may build up slowly and consequently transport processes may need to be studied over long distances.

Keywords

Wind Vector Trajectory Model Nyquist Frequency Analytical Diffusion Model Radix Fast Fourier Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bass, A., Modeling Long Range Transport and Diffusion, AMS/APCA Second Joint Conference on Applications of Air Pollution Meteorology, New Orleans, Louisiana (March 24–27, 1980 ).Google Scholar
  2. Begovich, C. L.; Murphy, B. D.; and Nappo, C. L., RETADD: A Regional Trajectory and Diffusion—Deposition Model, ORNL/TM-5859 (June 1978).Google Scholar
  3. Bird, R. B.; Stewart, W. E.; and Lightfoot, E.N., Transport Phenomena, John Wiley and Sons (1960).Google Scholar
  4. Chock, D. P. and Dunker, A. M., A Comparison of Numerical Methods for Solving the Advection Equation, AMS Fifth Symposium on Turbulence Diffusion and Air Pollution, Atlanta, Georgia (March 9–13, 1981 ).Google Scholar
  5. Christensen, O. and Prahm, L. D., “A Pseudo—Spectral Model for Dispersion of Atmospheric Pollutants”, J. Appl. Meteor. 15: 1284–1294 (1976).ADSCrossRefGoogle Scholar
  6. Davis, R. M., et al. National Coal Utilization Assessment. A Preliminary Assessment of Coal Utilization in the South, ORNL/TM-6122 (Oct. 1978).Google Scholar
  7. Egan, B. A. and Mahoney, J. R., “Numerical Modeling of Advection and Diffusion of Urban Area Source Pollutants”, J. Appl. Meteor. 11: 312–322 (1972).ADSCrossRefGoogle Scholar
  8. Eliassen, A., “A Review of Long—Range Transport Modeling”, J. Appl. Meteor. 19: 231–240 (1980).ADSCrossRefGoogle Scholar
  9. Fay, J. A. and Rosenzweig, J. J., “An Analytical Diffusion Model for Long Distance Transport of Air Pollutants”, Atmospheric Environment 14: 355–365 (1980).CrossRefGoogle Scholar
  10. Gifford, F. A., “Tropospheric Relative Diffusion Observations”, J. Appl. Meteor. 16: 311–313 (1977).ADSCrossRefGoogle Scholar
  11. Heffter, J. L.; Taylor, A. D.; and Ferber, G. J., A Regional—Continental Scale Transport Diffusion and Deposition Model, NOAA Tech. Memo. ERL ARL-50 (1975).Google Scholar
  12. Husar, R. B.; Lodge, J. P. and Moore, D. J., editors, “Sulfur in the Atmosphere”, Proceedings of the International Symposium held in Dubrovnik (September, 1977), Pergamon Press Ltd. (1978) (also published as volume 12, number 1/3 of Atmospheric Environment).Google Scholar
  13. Mahlman, J. D. and Sinclair, R. W., Tests of Various Numerical Algorithms Applied to a Simple Trace Constituent Air Transport Problem, Fate of Pollutants in the Air and Water Environments, Part 1, Vol. 8, I. H. Suffet, Ed., John Wiley and Sons (1977).Google Scholar
  14. Mills, M. T. and Hirata, A. A., A Multi—Scale Transport and Dispersion Model for Local and Regional Scale Sulfur Dioxide/Sulfate Concentrations: Formulation and Initial Evaluation, NATO/CCMS Air Pollution Pilot Study, Toronto (August 1978).Google Scholar
  15. Murphy, B. D.; Nelson, C. B. and Ohr, S. Y., A Consistent Treatment of Ground Deposition Together with Species Growth and Decay During Atmospheric Transport, Symposium on Intermediate Range Atmospheric Transport Processes and Technology Assessment, Gatlinburg, TN, October 1–3, 1980.Google Scholar
  16. Murphy, B. D.; Parzyck, D. C. and Raridon, R. J., Estimated Pollutant Loading Patterns and Population Exposures Associated with Power Plant Siting in the South, Air Pollution Control Association, Houston, Texas (June 1978).Google Scholar
  17. Murphy, B. D., PHENIX - A Pseudo-Spectral Model of Long-Range Atmospheric Transport, ORNL-5761 (July 1981).Google Scholar
  18. Orszag, S. A., “Numerical Simulation of Incompressible Flows within Simple Boundaries: Accuracy”, J. Fluid Mech. 49 Part 1: 75–112 (1971).MathSciNetADSCrossRefGoogle Scholar
  19. Prahm, L. P. and Christensen, 0., “Long-Range Transmission of Pollutants Simulated by a Two-Dimensional Pseudo-Spectral Dispersion Model”, J. Appl. Meteor. 16: 896–910 (1977).ADSCrossRefGoogle Scholar
  20. Rao, K. S.; Thomsen, I. and Egan, B. A., Regional Transport Model of Atmospheric Sulfates, NOAA, ATDL Contribution No. 76 /13 (1976).Google Scholar
  21. Roache, P. J., A Pseudo-Spectral FFT Technique for Non-Periodic Problems, J. Computational Phys. 27, 204–220 (1978).ADSMATHCrossRefGoogle Scholar
  22. Shampine, L. F. and Gordon, M. K., Computer Solution of Ordinary Differential Equations, W. H. Freeman and Company, San Francisco (1975).MATHGoogle Scholar
  23. Shannon, J. D., “A Gaussian Moment–Conservation Diffusion Model”, J. Appl. Meteor. 18: 1406–1414 (1979).ADSCrossRefGoogle Scholar
  24. Singleton, R. C., “An Algorithm for Computing the Mixed Radix Fast Fourier Transform”, IEEE Trans. Audio and Electroacoustics AU-17: 93–103 (1969).Google Scholar
  25. Start, G. E. and Wendell, L. L., Regional Effluent Dispersion Calculations Considering Spatial and Temporal Meteorological Variations, NOAA Technical Memorandum, ERL ARL-44, Idaho Falls, Idaho, 1974.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • B. D. Murphy
    • 1
  1. 1.Oak Ridge National LaboratoryComputer SciencesUSA

Personalised recommendations