Reactive Eicosanoid Intermediates and Transcellular Biosynthesis

  • Jacques Maclouf
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 177)


Most of the studies conducted in the seventies as well as in the early eighties, have been designed to establish the oxidative pathways of arachidonic acid by specific cell types resulting in the determination of the structure of eicosanoids by a given cell. Such an approach has delineated specific enzymatic patterns by certain cells in the blood and vascular system. Such findings are summarized in Table I. Platelets produce mainly 12-hydroxyeicosatetraenoic acid, 12-hydroxy heptadecatrienoic acid and thromboxane A2. Endothelial cells from human umbilical cord or vascular smooth muscle synthesize mainly prostaglandin I2 (prostacyclin) and prostaglandins E2 and F whereas this production is different for endothelial cells from the microvasculature. Polymorphonuclear granulocytes synthesize nearly exclusively LTB4 and eosinophils generate LTC4. Monocytes, depending upon their origin or their maturation, seem to produce both leukotrienes. In contrast, red blood cells and lymphocytes lack the specific oxygenases to form eicosanoids.


Prostaglandin Endoperoxide Unstable Intermediate Dioic Acid Acceptor Cell Sodium Arachidonate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benjamin C.W., Hopkins N.K., Oglesby T.D. and Gorman R.R. Agonist specific desensitization of leukotriene C4-stimulated PGI2 biosynthesis in human endothelial cells. Biochem. Biophys. Res. Commun.117: 780–787, 1983.PubMedCrossRefGoogle Scholar
  2. Borgeat P., Picard S., Vallerand P. and Sirois P. Prostaglandins Med. 6: 557–570,1981.PubMedCrossRefGoogle Scholar
  3. Borgeat B. and Samuelsson B. Arachidonic acid metabolism in polymorphonuclear leukocytes: Unstable intermediate in the formation of di-hydroxy acids. Proc. Natl.Acad. Sci. USA76: 3213–3217, 1979.PubMedCrossRefGoogle Scholar
  4. Braquet P., Touqui L., Shen T.Y. and Vargaftig B.B. Perspectives in platelet-activating factor research. Pharmacol. Rev.39: 97–145, 1987.PubMedGoogle Scholar
  5. Cramer E.B., Pologe L., Pawlowski N.A., Cohn Z.A. and Scott W.A. Leukotriene C promotes prostacyclin synthesis by human endothelial cells. Proc. Natl. Acad. Sci. USA80: 4109–4113, 1983.PubMedCrossRefGoogle Scholar
  6. Claesson H.E. and Haeggström J. Human endothelial cells stimulate leukotriene synthesis and convert granulocyte-released leukotriene A4 into leukotrienes B4, C4, D4 and E4. Eur. J. Biochem.173: 93–100, 1988.PubMedCrossRefGoogle Scholar
  7. Dahinden C. A., Clancy R.M., Gross M., Chiller J.M. and Hugly T.E. Leukotriene C4 production by murine mast cells: Evidence of a role for extracellular leukotriene A4. Proc. Natl. Acad. Sci. USA82: 6632–6636, 1985.PubMedCrossRefGoogle Scholar
  8. DeWitt D., Rollins T.E., Day J.S., Gauger J.A. and Smith W.L. Orientation of the active site and antigenic determinants of prostaglandin endoperoxide synthase in the endoplasmic reticulum. J. Biol. Chem.256: 10375–10382, 1981.PubMedGoogle Scholar
  9. Feinmark S.J. and Cannon P.J. Endothelial cells leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes. J. Biol. Chem.261: 16466–16472, 1986.PubMedGoogle Scholar
  10. Feinmark S.J. and Cannon P.J. Vascular smooth muscle cells leukotriene C4 synthesis: requirement for transcellular leukotriene A4 metabolism. Biochim. Biophys. Acta, 922: 125–135, 1987.PubMedGoogle Scholar
  11. Fitzgerald D.J., Roy L., Catella F. and FitzGerald G.A. Platelet activation in unstable coronary disease. N. Engl. J. Med.315: 983–989, 1986.PubMedCrossRefGoogle Scholar
  12. Fitzpatrick F.A., Liggett W., McGee J., Bunting S., Morton D. and Samuelsson B. Metabolism of leukotriene A4 by human erythrocyte: A novel cellular source of leukotriene B4. J. Biol. Chem.259: 11403–11407, 1984.PubMedGoogle Scholar
  13. Hamberg M. and Samuelsson B. Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc. Natl. Acad. Sci. USA70: 899–903, 1973.PubMedCrossRefGoogle Scholar
  14. Hamberg M., Svensson J. and Samuelsson B. Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proc. Natl. acad. Sci. USA71: 3824–3828, 1974.PubMedCrossRefGoogle Scholar
  15. Jakschik B.A., Harper T. and Murphy R.C. Leukotriene C4 and D4 formation by particulate enzymes. J. Biol. Chem.257: 5346–5349, 1982.PubMedGoogle Scholar
  16. Lindgren J.A., Hansson G. and Samuelsson B. FEBS Lett.128: 329–335, 1981.PubMedCrossRefGoogle Scholar
  17. Maclouf J., Fruteau de Laclos B. and Borgeat P. Stimulation of leukotriene biosynthesis by platelet-derived 12-hydroperoxy-icosatetraenoic acid. Proc. Natl. Acad. Sci. USA79: 6042–6046, 1982.PubMedCrossRefGoogle Scholar
  18. Maclouf J. and Murphy R.C. Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. J. Biol. Chem.263: 174–181, 1988.PubMedGoogle Scholar
  19. McGee J.E. and Fitzpatrick F.A. Enzymatic hydration of leukotriene A4 hydrolase: Purification and characterization of a novel epoxide hydrolase from human erythrocytes. J. Biol. Chem.260: 12832–12837, 1985.PubMedGoogle Scholar
  20. McGee J.E. and Fitzpatrick F.A. Erythrocyte-neutrophil interactions: Formation of leukotriene B4 via transcellular biosynthesis. Proc. Natl. Acad. Sci. USA, 83: 149–1353, 1986.CrossRefGoogle Scholar
  21. Marcus A.J., Weksler B.B., Jaffe E.A. and Broekman M.J. Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. J. Clin. Invest.66: 979–986, 1980.PubMedCrossRefGoogle Scholar
  22. Marcus A.J., Broekman, M.J., Safier L.B., Ullman H.L., Islam N., Serhan C.N., Rutherford L.E., Korchak H.M. and Weissman G. Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vivo. Biochem. Biophys. Res. Commun.109: 130–137, 1982.PubMedCrossRefGoogle Scholar
  23. Marcus A.J., Safier L.B., Ullman H.L., Broekman M.J., Islam N., Oglesby T.D. and Gorman R.R. 125,20-dihydroxyicosatetraenoic acid: A new icosanoid produced by thrombin-or collagen-stimulated platelets. Proc. Natl. Acad. Sci. USA81: 903–907, 1984.PubMedCrossRefGoogle Scholar
  24. Marcus A.J., Safier L.B., Ullman H.L., Islam N., Broekman M.J., Falck J.R., Fischer S., Von Schacky C. Platelet-neutrophil interactions: I2S-hydroxyeicosatetraen-1,20dioic acid: A new eicosanoid synthesized by unstimulated neutrophils from 12S20-dihydroxyeicosatetraenoic acid J. Biol. Chem. 263: 2223–2229, 1988.PubMedGoogle Scholar
  25. Nugteren D.H. and Hazelhof E. Isolation and properties of intermediates in prostaglandin biosynthesis Biochim. Biophys. Acta326: 448–461, 1973.Google Scholar
  26. Oates J.A., FitzGerald G., Branch R.A., Jackson E.K., Knapp H.R. and Roberts II, J. Clinical implications of prostaglandin and thromboxane A2 formation. N. Engl. J. Med. 319: 689–698, 1988.PubMedCrossRefGoogle Scholar
  27. Rollins T.E. and Smith W.L. Subcellular localization of prostaglandin-forming cyclóoxygenase in Swiss mouse 3T3 fibroblasts by electron microscopic immunocytochemistry. J. Biol. Chem.255: 4872–4875, 1980.PubMedGoogle Scholar
  28. Samuelsson B. J. Am. Chem. Soc. 87: 3011–3013, 1965.CrossRefGoogle Scholar
  29. Voelkel N.F., Worthen S., Reeves J.T., Henson P.M. and Murphy R.C. Nonimmunological production of leukotrienes induced by platelet-activating factor. Science218: 286–288, 1982.PubMedCrossRefGoogle Scholar
  30. Weksler B.B., Marcus A.J. and Jaffe E.A. Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proc. Natl. Acad. Sci. USA74: 39223926, 1977.Google Scholar
  31. Yoshimoto T., Soberman R.J., Spur B. and Austen K.F. Properties of highly purified leukotriene C4 synthase of guinea pig lung. J. Clin. Invest.81: 866–871, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jacques Maclouf
    • 1
  1. 1.Unite 150 INSERM, UA334 CNRSHopital LariboisiereParisFrance

Personalised recommendations