Quantitative Analysis of Eicosanoids by Gas Chromatography-Mass Spectrometry

  • Francesca Catella
  • Jana M. Johnson
  • Garret A. FitzGerald
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 177)


Eicosanoids are metabolic products derived from polyunsaturated straight-chain C 20 carboxylic acids. The most abundant substrate in humans is arachidonic acid (AA), a physiological component of the plasma membrane. Following stimulation, AA is released from an ester linkage to phospholipids and oxygenated into an array of compounds whose biological importance has been well established in vitro. On the other hand, the investigation of their potential role in human pathology depends upon assessment of their formation in vivo. Alterations in eicosanoid biosynthesis in pathological conditions and the functional consequences of their pharmacological inhibition or antagonism have indicated their pathophysiological role in vivo1–5. Specific and sensitive assays for eicosanoids have been required to address these issues.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fitzgerald, D.J., Roy L., Catella, F., and FitzGerald, G.A. Platelet activation in unstable coronary disease. N. Eng. J. Med.; 315: 983–989, (1986).Google Scholar
  2. 2.
    Lewis, H.D., Davis, J.W., Archibald, D.G., et. al. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina: results of a Veterans Administration cooperative study. N. Eng. J. Mcd.; 309: 396–403, (1983).CrossRefGoogle Scholar
  3. 3.
    Cairns, J.A., Gent, M., Singer, J., et al. Aspirin, sulfinpyrazone, or both in unstable angina: results of a Canadian multicenter trial. N. Eng. J. Med. 313: 1369–75, (1985).CrossRefGoogle Scholar
  4. 4.
    Fitzgerald, D.J., Catella, F., Roy, L. and FitzGerald, G.A. Marked platelet activation in vivo after intravenous streptokinase in patients with acute myocardial infarction. Circulation; 77 (1): 142–150 (1988).CrossRefGoogle Scholar
  5. 5.
    ISIS-2(Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet; i: 349–360, (1988).Google Scholar
  6. 6.
    Parry, M.J., Randall, M.J., Tyler, H.M., Myhre, E., Dabe, J. and Thaulow, E. Selective inhibition of thromboxane synthetase by dazoxiben increases prostacyclin production by leukocytes in angina patients and healthy volunteers. Lancet; ii;164, (1982) (letter).CrossRefGoogle Scholar
  7. 7.
    Pedersen, A.K., Watson, M.L. and FitzGerald, G.A. Limitations of the measurement of immunoreactive 6-keto-PGF1a. Thromb. Res.; 33: 99–103, (1983).CrossRefGoogle Scholar
  8. 8.
    Ciabattoni, G., Maclouf, J., Catella, F., FitzGerald, G.A., and Patrono, C. Radioimmunoassay of 11-dehydrothromboxane B 2 in human plasma and urine. Biochim. Biophys. Acta.; 918: 293–7, (1987).CrossRefGoogle Scholar
  9. 9.
    Patrono, C., Ciabattoni, G., Pugliese, F., Pierucci, A., Blair, I.A., and FitzGerald, G.A. Estimated rate of thromboxane secretion into the circulation of normal humans. J. Clin. Invest.; 77: 590–94, (1986).CrossRefGoogle Scholar
  10. 10.
    Knapp, H.R., Reilly, I.A.G., Alessandrini, P. and FitzGerald, G.A. In vivo indexes of platelet and vascular functions during fish-oil administration in patients with atherosclerosis. N. Eng. J. Med., 324:937–942, (1986).Google Scholar
  11. 11.
    Needleman, P., Raz, A., Minkes, M.S., Ferrendelli, J.A., and Sprecher, H. Triene prostaglandins: Prostacyclin and thromboxane biosynthesis and unique biological properties. Proc. Natl. Acad. Sci. USA 76: 944–948, (1979).CrossRefGoogle Scholar
  12. 12.
    Braden, G.A., Fitzgerald, D.J., Knapp, H.R. and FitzGerald, G.A. Increased thromboxane (Tx)A2 biosynthesis during coronary thrombosis and thrombolysis with n-3 fatty acid (FA) supplementation. Circulation; 78 (4); II - 120, (1988).Google Scholar
  13. 13.
    Catella, F., Healy D., Lawson, J.A. and FitzGerald G.A. 11- Dehydrothromboxane B2: A quantitative index of thromboxane A2 formation in the human circulation. Proc. Natl. Acad. Sci, USA; 83: 5861–65, (1986).CrossRefGoogle Scholar
  14. 14.
    Catella, F. and FitzGerald, G.A. Paired analysis of urinary thromboxane B2 metabolites in humans. Thromb. Res.; 47: 647–656, (1987).CrossRefGoogle Scholar
  15. 15.
    Falardeau, P., Oates, J.A. and Brash, A.R. Quantitative analysis of two dinor urinary metabolites of prostaglandin I2. Anal. Biochem.; 115: 359–67, (1981).CrossRefGoogle Scholar
  16. 16.
    Lawson, J.A., Brash, A.R., Doran, J. and FitzGerald, G.A. Measurement of urinary 2,3-dinor-thromboxane B2 and thromboxane B2 using bonded-phase phenylboronic acid columns and capillary gas chromatography-negative-ion chemical ionization mass spectrometry. Anal. Biochem. 150: 463–470, (1985).CrossRefGoogle Scholar
  17. 17.
    Hubbard, H.L., Eller, T.D., Mais, D.E., Halushka, P.V., Baker, R.H., Blair, I.A., Vrbanac, J.J., and Knapp, D.R. Extraction of thromboxane B2 from urine using an immobilized antibody column for subsequent analysis by gas chromatography-mass spectometry. Prostaglandins; 33: 149, 1987.CrossRefGoogle Scholar
  18. 18.
    Brash, A.R., Baillie, T.A., Claire, R.A., and Draffan, G.H. Quantitative determination of the major metabolite of prostaglandins F1 and F2 in human urine by stable isotope dilution and combined gas chromatography-mass spectrometry. Biochem. Med. 16: 77–94, (1976).CrossRefGoogle Scholar
  19. 19.
    Whittaker, N. Tetrahedron Lett. A synthesis of prostacyclin sodium salt. 32: 2805–3808, (1977).Google Scholar
  20. 20.
    Sun, F.F., Taylor, B.M., Lincoln, F.H., and Sebek, O.K. Preparation of two dinor-PGI2 metabolites from 6-keto-PGF1a by mycobacterium rhodochrous. Prostaglandins 20: 729–734, (1980).CrossRefGoogle Scholar
  21. 21.
    Balazy, M., Brass, E.P., Gerber, J.G., and Nies, A.S. Facile method for preparation of 2,3-dinor-6-keto PGF1, the major urinary metabolite of prostacyclin. Prostaglandins; 36: 421–43%, 1988.Google Scholar
  22. 22.
    Lawson, J.A., Patrono, C., Ciabattoni, G., and FitzGerald, G.A. Long-lived enzymatic metabolites of thromboxane B2 in the human circulation. Anal. Biochem. 155: 198–205, (1986).CrossRefGoogle Scholar
  23. 23.
    Blair, I.A., Barrow, S.E., Waddell, K.A., Lewis, P.J., and Dollery, C.T. Prostacyclin is not a circulating hormone in man. Prostaglandins; 23: 579589, (1982).CrossRefGoogle Scholar
  24. 24.
    FitzGerald, G.A., Brash, A.R. Falardeau, P., and Oates, J.A. Estimated rate of prostacyclin secretion into the circulation of normal man. J. Clin. Invest. 68: 1271–76, (1981).CrossRefGoogle Scholar
  25. 25.
    Neri Serneri, G.G., Gensini, F.F., Abbate, R., et al. Abnormal cardio- coronary thromboxane A2 production in patients with unstable angina. Am. Heart. J.; 109: 732–8, (1985).CrossRefGoogle Scholar
  26. 26.
    Patrignani, P., Filabozzi P., and Patrono, C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J. Clin. Invest. 69: 1366–72, (1982).CrossRefGoogle Scholar
  27. 27.
    Patrono, C., Ciabattoni, G., Patrignani, P., et al. Evidence for a renal origin of urinary thromboxane B2 in health and disease. In: Advances in Prostaglandin, Thromboxane, and Leukotriene Research, vol 11, ed. by B. Samuelsson, R., Paoletti, R., and Ramwell, P.W. 493–498, Raven Press, New York, 1983.Google Scholar
  28. 28.
    Nowak, J., and FitzGerald, G.A.: Prostaglandin endoperoxide reorientation at the platelet vascular interface in man. J. Clin. Invest. (in press) 1988.Google Scholar
  29. 29.
    Dworski,R.,Sheller,J.,Wickersham, N.E.,Oates,J.A., Brigham,K.L.,Roberts,L.J.,II,FitzGerald,G.A.Allergen stimulated release of mediators into sheep bronchoalveolar lavage fluid: Effect of cyclooxygenase inhibition. Am.Rev.Res.Dis.(in press), 1989.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Francesca Catella
    • 1
  • Jana M. Johnson
    • 1
  • Garret A. FitzGerald
    • 1
  1. 1.Department of PharmacologyVanderbilt UniversityNashvilleUSA

Personalised recommendations