Inhibitors of Leukotriene Action: Potential Use in Asthma, Inflammatory Bowel Disease, and Cutaneous Inflammation

  • A. F. Welton
  • P. C. Will
  • D. W. Morgan
  • H. Crowley
  • M. O’Donnell
  • J. Hurley
  • S. Shapiro
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 177)


Research carried out in numerous laboratories has led to the hypothesis that metabolites of the ∆5-lipoxygenase (5∆-L0) pathway (e.g., leukotrienes and 5-HETE) may play an important role in mediating a number of inflammatory diseases including asthma, inflammatory bowel disease, and diseases associated with cutaneous inflammation. The purpose of this chapter is to briefly review the rationale supporting this hypothesis and to present the results of some experimental studies with promising ∆5-L0 inhibitors and leukotriene antagonists which would support the clinical evaluation of these types of drugs in the three disease states.


Arachidonic Acid Atopic Dermatitis Cutaneous Inflammation Pulmonary Vascular Smooth Muscle Acetic Acid Group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A. Lewis, K.F. Austen, J.M. Drazen, D.A. Clark, A. Marfat and E.J. Corey, Slow reacting substance of anaphylaxis: Identification of leukotrienes C-1 and D from human and rat sources, Proc. Natl. Acad. Sci. USA 77: 3710 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    P.J. Piper and M.N. Samhoun, The mechanism of action of leukotrienes C4 and D4 in guinea pig isolated perfused lung and parenchymal strips of guinea pig, rabbit and rat, Prostaglandins 21: 793 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    G.K. Adams, and L.M. Lichtenstein, Antagonism of antigen-induced contraction of guinea pig and human airways, Nature 270: 255 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    R.D. Krell, D.W. Snyder, D. Aharony, B.-S. Tsai, and R.E. Giles, Pharmacologic description of peptide leukotriene receptors in conducting airways of guinea pig and ferret, Prostaglandins 28: 614 (1984).CrossRefGoogle Scholar
  5. 5.
    A.F. Welton, H.J. Crowley, D.A. Miller, and B. Yaremko, Biological activities of. a chemically synthesized form of leukotriene E4, Prostaglandins 21: 287 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    A.F. Welton, M. O’Donnell, W. Anderson, H. Crowley, A. Medford, B. Simko and B. Yaremko, Role of cyclooxygenase products in some of the biological effects of chemically synthesized leukotrienes (B4, C4’ D4’ and E4), Advances in Prostaglandin, Thromboxane and Leukotriene Research, 12: 145 (1983).Google Scholar
  7. 7.
    J.M. Drazen, K.F. Austen, R.A. Lewis, D.A. Clark, G. Goto, A. Marfat, and E.J. Corey, Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro, Proc. Natl. Acad. Sci. USA 77: 4354 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Patterson, K.E. Harris, L.J. Smith, P.A. Greenberger, M.A. Shaughnessy, P.R. Bernstein, and R.D. Krell, Airway response to leukotriene D4 in Rhesus monkeys, Int. Archs. Allergy Appl. Immunol. 71: 156 (1983).CrossRefGoogle Scholar
  9. 9.
    M.C. Holroyde, R.E.C. Altounyan, M. Cole, M. Dixon, and E.V. Elliott, Bronchoconstriction produced in man by leukotrienes C and D, Lancet 2: 17 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Griffin, J.W. Weiss, A.G. Leitch, E.R. McFadden Jr., E.J. Corey, K.F. Austen, and J.M. Drazen, Effects of leukotriene D on the airways in asthma, N. Engl. J. Med. 308: 436 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Adelroth, M. Morris, F.E. Hargreave, and P.M. O’Byrne, Airway responsiveness to leukotrienes C4 and D4: Relationship to airway responsiveness to methacholine, Am. Rev. Respir. Dis. 131: A4 (1985).Google Scholar
  12. 12.
    J.W. Weiss, J.M. Drazen, N. Coles, E.R. McFadden, Jr., P.F. Weller, E.J. Corey, R.A. Lewis, and K.F. Austen, Bronchoconstriction effects of leukotriene C in humans, Science 216: 196 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    L.J. Smith, P.A. Greenverger, R. Patterson, R.D. Krell, and P.R. Bernstein, The Effect of inhaled leukotriene D4 in humans, Am. Rev. Respir. Dis. 131: 368 (1985).PubMedGoogle Scholar
  14. 14.
    J.W. Weiss, J.M. Drazen, E.R. McFadden, Jr., P. Weller, E.J. Corey, R.A Lewis, and K.F. Drazen, Airway constriction in normal humans produced by inhalation of leukotriene D: potency, time course, and effect of aspirin therapy, J. Am. Med. Assoc. 249: 2814 (1983).CrossRefGoogle Scholar
  15. 15.
    H. Bisgaard, S. Groth, and F. Madsen, Bronchial hyperreactivity to leukotriene D4 and histamine in exogenous asthma, Br. Med. J. 290: 1468 (1985).CrossRefGoogle Scholar
  16. 16.
    N.C. Barnes, P.J. Piper, and J.F. Costello, Comparative effects of inhaled leukotriene C4, leukotriene D4, and histamine in normal human subjects, Thorax 39: 500 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    S.E. Dahlen, G. Hansson, P. Hedqvist, T. Bjorck, E. Granstrom, and B. Dahlen, Allergen challenge of lung tissue from asthmatics elicits bronchial contraction that correlates with the release of leukotrienes C4, D4, and E4, Proc. Nat’l. Acad. Sci. USA 80: 1712 (1983).CrossRefGoogle Scholar
  18. 18.
    T. Vigano, A. Toia, G. Galli, F. Berti, M.T. Crivellari, M. Mezzetti, and G.C. Folco, Adenosine and eicosanoid release from immunologically challenged human lung fragments, Advances in Prostaglandins, Thromboxanes, and Leukotriene Research. 17B: 992 (1987).Google Scholar
  19. 19.
    D.W. MacGlashan, R.P. Schieimer, S.P. Peters, E.S. Schulman, G.K.Adams, H.H. Newball, and L.M. Lichtenstein, G.neration of leukotrienes by purified human lung mast cells, J. Clin. Invest. 70: 747 (1982).Google Scholar
  20. 20.
    R.J. Shaw, G.M. Walsh, 0. Cromwell, R. Mogbel, C.J.F. Spry, and A.B. Kay, Activated human eosinophils generate SRS-A leukotrienes following IgG-dependent stimulation, Nature 316: 150 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    A.B. Kay, The sputum in bronchial asthma. in: “Asthma”, Clark and Dogfrey, ed., Chapman and Hall, London (1983).Google Scholar
  22. 22.
    J.T. Zakrzewski, N.C. Barnes, P.J. Piper, and J.F. Costello, Measurement of leukotrienes in arterial and venous blood from normal and asthmatic subjects by radioimmunoassay, Br. J. Clin. Pharmacol. 19:574 P. (1985).Google Scholar
  23. 23.
    P.S. Creticos, S.P. Peters, N.F. Adkinson, Jr. R.M. Naclerio, E.C. Hayes, P.S. Norman, and L.M. Lichtenstein, Peptide-leukotriene release after antigen challenge in patients sensitive to ragweed, N. Engl. J. Med. 310: 1626 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    C.J. Hanna, M.K. Bach, P.D. Pare, and R.R. Schellenberg, Slow-reacting substances (leukotrienes) contract human airway and pulmonary vascular smooth muscle in vitro, Nature 290: 343 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    Z. Marom, J.H. Shelhamer, M.K. Bach, D.R. Morton, and M. Kaliner, Slow-reacting substances, leukotrienes C4 and D4 increase the release of mucus from human airways in vitro, Am. Rev. Respir. Dis. 126: 449 (1982).PubMedGoogle Scholar
  26. 26.
    A.F. Welton, L.D. Tobias, C. Fiedler-Nagy, W. Anderson, W. Hope, K. Meyers, and J.W. Coffey, The effect of flavonoids on arachidonic acid metabolism, in: “Plant Flavonoids in Biology and Medicine”, Cody, V., Middleton, Jr., E., Harborne, J.B., (eds): Alan R. Liss, New York (1987).Google Scholar
  27. 27.
    A.F. Welton, J. Hurley, and P. Will, Flavonoids and arachidonic acid metabolism, in: “Plant Flavonoids in Biology and Medicine I I: Biochemical, Cellular, and Medicinal Properties”, Cody, V., Middleton Jr., E., Jr., Harborne, J.B., and Beretz, A. (eds)., Alan R. Liss, New York (1988).Google Scholar
  28. 28.
    C. Fiedler-Nagy,, B.H. Wittreich, A. Georgiadis, W.C. Hope, A.F. Welton and J.W. Coffey, Comparative study of natural and synthetic retinoids as inhibitors of arachidonic acid release and metabolism in rat peritoneal macrophages, Dermatologica 175: 81 (1987).Google Scholar
  29. 29.
    A.F. Welton and M. O’Donnell, New Pharmacologic Agents Which Antagonize Leukotriene D4 and PAF, in “Prostanoids and Drugs,” G. Floco and G. Velo (eds)., Plenum Press, New York (1989).Google Scholar
  30. 30.
    J.H. Fleisch, L.E. Rinkema, C.A. Whitesitt, and W.S. Marshall,Development of cysteinyl leukotriene receptor antagonists, Advances in Inflammation Research 12: 173 (1988).Google Scholar
  31. 31.
    R.D. Krell, Federation Proceedings (in press).Google Scholar
  32. 32.
    A.W. Ford-Hutchinson, Leukotrienes: Their formation and role as inflammatory mediators, Fed. Proc. 44: 25 (1985).Google Scholar
  33. 33.
    J.T. O’Flaherty, Neutrophil degranulation: Evidence pertaining to its mediation by the combined effects of leukotriene B4, platelet activating factor, and 5-HETE, J. Cell. Physiol. 122: 229 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    S.R. Gould, Assay of prostaglandin-like substances in feces and their measurement in ulcerative colitis, Prostaglandins 11: 489 (1976).PubMedCrossRefGoogle Scholar
  35. 35.
    K. Lauritsen, L.S. Laursen, K. Bukhave, and J. Rask-Madsen, Effects of topical 5-aminosalicylic acid and prednisolone on prostaglandin E2 and leukotriene B4 levels determined by equilibrium in vivo dialysis of rectum in relapsing ulcerative colitis, Gastroenterology 91: 837 (1986).PubMedGoogle Scholar
  36. 36.
    D.S. Rampton, G.E. Sladen, and L.J.F. Youlten, Rectal mucosal prostaglandin E2 release and its relation to disease activity, electrical potential difference, and treatment in ulcerative colitis, Gut 21: 591 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    B.M. Peskar, K.W. Dreyling, B.A. Peskar, B. May, and H. Goebell, Enhanced formation of sulfidopeptide-leukotrienes in ulcerative colitis and Crohn’s disease: inhibition by sulfasalazine and 5-aminosalicyclic acid, Agents Actions 18: 381 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    P. Sharon, and W.F. Stenson, Enhanced synthesis of leukotriene 84 by colonic mucosa in inflammatory bowel disease, Gastroenterology 86: 453 (1984).PubMedGoogle Scholar
  39. 39.
    N.K. Boughton-Smith, C.J. Hawkey, and B.J.R. Whittle, Biosynthesis of lipoxygenase and cyclooxygenase products from [14C]-arachidonic acid by human colonic mucosa, Gut 24: 1176 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Ligumsky, F. Karmeli, P. Sharon, U. Zor, F. Cohen, and D. Rachmilewitz, Enhanced thromboxane A2 and prostacyclin production by cultured rectal mucosa in ulcerative colitis and its inhibition by steroids and sulfasalazine, Gastroenterology 81: 444 (1981).PubMedGoogle Scholar
  41. 41.
    M.W. Musch, R.J. Miller, M. Field, and M.I. Siegel, Stimulation of colonic secretion by lipoxygenase metabolites of arachidonic acid, Science 217: 1255 (1982).PubMedCrossRefGoogle Scholar
  42. 42.
    T. Bolin, R. Heuman, R. Sjodahl, and C. Tagessan, Decreased lysophospholipase and increased phospholipase A2 activity in ileal mucosa from patients with Crohn’s disease, Digestion 29: 55 (1984).PubMedCrossRefGoogle Scholar
  43. 43.
    D.S. Rampton, and G.E. Sladen, Prostaglandin synthesis inhibitors in ulcerative colitis: Flurbiprofen compared with conventional treatment, Prostaglandins 21: 417 (1981).PubMedCrossRefGoogle Scholar
  44. 44.
    H.J. Kaufmann, and H.L. Taubin, Nonsteroidal antiinflammatory drugs activate quiescent inflammatory bowel disease, Annals Int. Med. 107: 513 (1987).Google Scholar
  45. 45.
    R.D. Zipser, M. Pinzani, and C.C. Nast, Effect of sulfasalazine and the leukotriene inhibitor L-651,392 in rabbit colitis: Evidence that LTB4 production contributes to inflammation, Gastroenterology 92: 1711 (1987).Google Scholar
  46. 46.
    B.R. MacPherson, and C.J. Pfeiffer, Experimental production of diffuse colitis in rats, Digestion 17: 135 (1978).PubMedCrossRefGoogle Scholar
  47. 47.
    N.S. Mann, H.C. Kwaan, and S.K. Mann, E.C. Cheung, E.fect of epsilon amino caproic acid on experimental acetic acid colitis, Am. J. Proct. Gastro. Colon Rectal Surq. 31: 11 (1980).Google Scholar
  48. 48.
    P. Sharon, and W.F. Stenson, Enhanced synthesis of leukotriene 84 by colonic mucosa in inflammatory bowel disease, Gastroenterology 86: 543 (1984).Google Scholar
  49. 49.
    P. Sharon, and W.F. Stenson, Metabolism of arachidonic acid in acetic acid colitis in rats: similarity to human inflammatory bowel disease, Gastroenterology 88: 55 (1985).PubMedGoogle Scholar
  50. 50.
    P. Conzentino, P.C. Will, A. Lin, and T.S. Gaginella, Effect of A5lipoxygenase (LO) inhibitors on acetic acid induced colitis in the rat, Pharmacologist 28:163.(1986).Google Scholar
  51. 51.
    P.C. Will, P. Conzentino, W. Allbee, G. Roberts, A. Lin, L. Iverson, W. Weiss, F. Cochran, D. Morgan, and T.S. Gaginella, Effect of inhibitors of A5lipoxygenase on acetic acid-induced colitis in the rat. In Preparation.Google Scholar
  52. 52.
    P.C.Will, G. Roberts, W. Allbee, P. Conzentino, T.S. Gaginella and A. Welton, Efficacy of leukotriene antagonists in animal models of intestinal inflammation. In Preparation.Google Scholar
  53. 53.
    J.E. Krawisz, P. Sharon, and W.F. Stentson, Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity: assessment of inflammation in rat and hamster models, Gastroenterology 87: 1344 (1984).PubMedGoogle Scholar
  54. 54.
    B.M. Peskar, K.W. Dreyling, B.A. Peskar, B. May, and H. Goebell, Enhanced formation of sulfidopeptide-leukotrienes in ulcerative colitis and Crohn’s disease: Inhibition by sulfasalazine and 5-amino salicylic acid, Agents Actions 18: 381 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    M.A. Peppercorn, Sulfasalazine and related new drugs, J. Clin. Pharmacol. 27: 260 (1987).PubMedGoogle Scholar
  56. 56.
    P.C. Will, W. Allbee, T.S. Gaginella, A.F. Welton, L. Iverson, W.Weis, G. Roberts, P. Conzentino, and J. Edgcomb, Colonic anti-inflammatory activity of ablucast, an orally active leukotriene antagonist, 4th International Conference of the Inflammation Research Association Abstracts, October, 1988.Google Scholar
  57. 57.
    M. O’Donnell, A.F. Welton, H. Crowley, D. Brown, R. Garippa, N. Cohen, G. Weber, B. Banner, and R.J. Lopresti, Pharmacological profile of Ro 23–3544, a new aerosol active leukotriene receptor antagonist, Adv. Prostaglandin Thromboxane, and Leukotriene Res. 17: 512 (1987).Google Scholar
  58. 58.
    C. Buckner, J. Fedyna, R. Krell, J. Robertson, R. Keith, V. Matassa, F. Brown, P. Bernstein, Y. Yee, J. Will, R. Fishleder, R. Saban, B. Hesp, and R. Giles, Antagonist by ICI 204,219 of leukotriene receptors in guinea pig and human airways, Fed. Proc. 2(5):Al264 (1988).Google Scholar
  59. 59.
    S. Hammarström, M. Hamberg, B. Samuelsson, E. Duell, M. Stawiski, and J.J. Voorhees, Increased concentrations of non-esterified arachidonic acid, prostaglandin E2 and prostaglandin F2a in epidermis of psoriasis, Proc. Natl. Acad. Sci. USA 72: 5130 (1975).PubMedCrossRefGoogle Scholar
  60. 60.
    J. Grabbe, B.M. Czarnetzki, T. Rosenbach, and M. Mardin, Identification of chemotactic lipoxygenase products of arachidonate metabolism in psoriatic skin, J. Invest. Dermatol. 82: 477 (1984).PubMedCrossRefGoogle Scholar
  61. 61.
    S.D. Brain, R.D.R. Camp, P.M. Dowd, A. Kobza-Black, P.M. Wollard, A.I. Mallet, and M.W. Greaves, Psoriasis and leukotriene 84, Lancet 2: 763 (1982).Google Scholar
  62. 62.
    S. Brain, R. Camp, P. Dowd, A.K. Black, and M.J. Greaves, The release of leutotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis, Invest. Dermatol. 83: 70 (1984).Google Scholar
  63. 63.
    S.D. Brain, R.D.R. Camp, A. Kobza-Black, P.M. Dowd, M.W. Greaves, A.W. Ford-Hutchinson, and S. Charleson, Leukotrienes C4 and D4 in psoriatic skin lesions, Prostaglandins 29 (4): 611 (1985).PubMedCrossRefGoogle Scholar
  64. 64.
    V.A. Ziboh, T. Casebolt, C.L. Marcelo, and J.J. Voorhees, Enhancement of 5-lipoxygenase activity in soluble preparations of human psoriatic plaque, J. Invest. Dermatol. 80: 359 (1983).Google Scholar
  65. 65.
    H. Kayayama, and A. Kawada, Exacerbation of psoriasis induced by indomethacin, J. Dermatol. 8: 323 (1981).Google Scholar
  66. 66.
    J.J. Voorhees, Leukotrienes and other lipoxygenase products in the pathogenesis and therapy of psoriasis and other dermatoses, Arch. Dermatol. 119: 541 (1983).Google Scholar
  67. 67.
    V.A. Ziboh, C.L. Marcelo, and J.J. Voorhees, Induced lipoxygenation of arachidonic acid in mouse epidermal keratinocytes by calcium ionophore A23187, J. Invest. Dermatol. 76: 307 (1981).Google Scholar
  68. 68.
    S.D. Brain, R.D.R. Camp, I.M. Leigh, and A.W. Ford-Hutchinson, The synthesis of leukotriene B4-like material by cultured human keratinocytes, J. Invest. Dermatol. 78: 328 (1982).Google Scholar
  69. 69.
    C.C. Chan, L. Duhamel, and A.W. Ford-hutchinson, Leukotriene 84 and 12-hydroxyeicosatetraenoic acid stimulate epidermal proliferation in vivo in the guinea pig, J. Invest. Dermatol. 85: 333 (1985).PubMedCrossRefGoogle Scholar
  70. 70.
    N.A. Sorter, R.A. Lewis, E.J. Corey, and K.F. Austen, Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4, and LTB4) in human skin, J. Invest. Dermatol. 80: 115 (1983).CrossRefGoogle Scholar
  71. 71.
    W.A. Bray, A.W. Ford-Hutchinson, and M.J.H. Smith, Leukotriene 84: An inflammatory mediator in vivo, Prostaglandins 22: 213 (1981).PubMedCrossRefGoogle Scholar
  72. 72.
    R.D.R. Camp, A.A. Coutts, M.W. Greaves, A.B. Kay, and M.J. Walport, Responses of human skin to intradermal injections of leukotrienes C4, D4, and B4, Br. J. Pharmacol. 80: 497 (1983).PubMedGoogle Scholar
  73. 73.
    R. Camp, R.R. Jones, S. Brain, P. Wollard, and M. Greaves, Production of intraepidermal microabscesses by topical application of leukotriene 84, J. Invest. Dermatol. 82: 202 (1984).PubMedCrossRefGoogle Scholar
  74. 74.
    H. Bisgaard, J. Kristensen, and J. Sondergaard, The effect of leukotrienes C4 and D4 on microcirculatory flow in humans, Br. J. Dermatol. 109: 124 (1983).PubMedCrossRefGoogle Scholar
  75. 75.
    T. Ruzicka, T. Simmet, B.A. Peskar, and 0. Braun-Falco, Leukotrienes in skin of atopic dermatitis, Lancet 1: 222 (1984).PubMedCrossRefGoogle Scholar
  76. 76.
    S.F. Talbot, P. Atkins, E. Goetzl, and B. Zweiman, Patterns of LTC4 release in human allergic skin reactions, J. Allergy and Clin . Immunol. 75: 183 (1985).CrossRefGoogle Scholar
  77. 77.
    A.F. Welton, and W.A. Scott, Therapeutic approaches to arthritis through modulation of lipid mediators, Adv. in Inflamm. Res. 11: 313 (1986).Google Scholar
  78. 78.
    J.L. Humes, E.E. Opas, and R.J. Bonney, Arachidonic acid metabolites in mouse ear edema, Adv. in Inflammation Res. 11:57 (1986).Google Scholar
  79. 79.
    J.M. Young, B.M. Wagner, and D.A. Spires, Tachyphylaxis in 12–0tetracecanoylphorbol acetate-and arachidonic acid-induced ear edema, J. Invest. Dermatol. 80: 48 (1983).PubMedCrossRefGoogle Scholar
  80. 80.
    A. Lassus, and S. Forsstrom, A dimethoxynaphthalene derivative (RS-43179 gel) compared with 0.025% fluocinolone acetonide gel in the treatment of psoriasis, Br. J. Dermatol. 113: 103 (1985).PubMedCrossRefGoogle Scholar
  81. 81.
    R. Camp, A. Kobza-Black, F. Cunningham, A. Mallet, and M. Greaves, Pharmacological effects of topical lonapalene in psoriasis, J. Invest. Dermatol. 90: 550 (1988).Google Scholar
  82. 82.
    H. Crowley, B. Yaremko, and A.F. Welton, Topical activity of FPL 55712, a leukotriene receptor antagonist in rats and guinea pigs, XII International Congress of Allergology and Clinical Immunology Abstracts (1985).Google Scholar
  83. 83.
    J. Grabbe, T. Rosenbach, and B.M. Czarnetzki, Production of LTB4-like chemotactic arachidonate metabolites from human keratinocytes, J. Invest. Dermatol. 85: 527 (1985).PubMedCrossRefGoogle Scholar
  84. 84.
    V.A. Ziboh, T.L. Casebolt, C.L. Marcelo, and J.J. Voorhees, Biosynthesis of lipoxygenase products by enzyme preparations from normal and psoriatic skin, J. Invest. Dermatol. 83: 426 (1984).PubMedCrossRefGoogle Scholar
  85. 85.
    N. Fincham, R. Camp, and I. Leigh, Synthesis of arachidonate lipoxygenase products by epidermal cells, J. Invest. Dermatol. 84: 447 (1985).Google Scholar
  86. 86.
    T. Ruzicka, T. Simmet, B.A. Peskar, and J. Ring, Skin levels of arachidonic acid-derived inflammatory mediators and histamine in atopic ermatitis and psoriasis, J. Invest. Dermatol. 86: 105 (1986).PubMedCrossRefGoogle Scholar
  87. 87.
    W.H. Anderson, M. O’Donnell, B.A. Simko, and A.F. Welton, An in vivo model for measuring antigen-induced SRS-A-mediated bronchoconstriction and plasma SRS-A levels in the guinea pig, Br. J. Pharmacol. 78: 67 (1983).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. F. Welton
    • 1
  • P. C. Will
    • 1
  • D. W. Morgan
    • 1
  • H. Crowley
    • 1
  • M. O’Donnell
    • 1
  • J. Hurley
    • 1
  • S. Shapiro
    • 1
  1. 1.Hoffmann-La Roche, Inc.NutleyUSA

Personalised recommendations