Modulation of the Inflammatory Potential of the 5-Lipoxygenase Pathway by Alternative Fatty Acids and Cytokines

  • Robert A. Lewis
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 177)


The inflammatory products of the 5-lipoxygenase pathway are considered to be locally-acting mediators, as compared to hormonal factors which can evoke their effects at great distances from the cell of origin. This is presumed to be correct because, despite the nanomolar potencies of several of these fatty acid metabolites for eliciting their effects, the quantities generated pathophysiologically are likely to be quite limited and the rate of metabolic inactivation in the circulation, significant. However, it is likewise clear that two classes of molecules that are more broadly bioavailable in the circulation, namely N-3 fatty acids provided in the diet by the oils of marine fish and certain cytokines, can have profound effects upon the generation of the 5-lipoxygenase products and certain of their elicited biological responses. Examples of such circulating regulators presetting the capacities for local mediator generation and response are the subject of this review.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Samuelsson, S. Hammarström, M. Hamberg, and C. N. Serhan, Structural determination of leukotrienes and lipoxins, Adv. Prost. Thromb. Leuk. Res. 14: 45 (1985).Google Scholar
  2. 2.
    B. J. Fitzsimmons, J. Adams, J. F. Evans, Y. Leblanc, and J. Rokach, The lipoxins: stereochemical identification and determination of their biosynthesis, J. Biol. Chem. 260: 13008 (1985).PubMedGoogle Scholar
  3. 3.
    R. A. Lewis and K. F. Austen, The biologically active leukotrienes: biosynthesis, metabolism, receptors, functions, and pharmacology, J. Clin. Invest. 73: 889 (1984).CrossRefGoogle Scholar
  4. 4.
    D. W. MacGlashin, Jr., S. P. Peters, J. Warner, and L. M. Lichtenstein, Characteristics of human basophil sulfidopeptide leukotriene release: releasability defined as the ability of the basophil to respond to dimeric cross-links, J. Immunol. 136: 2231 (1986).Google Scholar
  5. 5.
    B. A. Jakschik and C. H. Lee, Enzymatic assembly of slow reacting substance, Nature 287: 51 (1980).CrossRefGoogle Scholar
  6. 6.
    K. Ochi, T. Yoshimoto, S. Yamamoto, K. Taniguchi, and T. Miyamoto, Arachidonate 5-lipoxygenase of guinea pig peritoneal polymorphonuclear leukocytes: activation by adenosine-5’ triphosphate, J. Biol. Chem. 258: 5754 (1983).PubMedGoogle Scholar
  7. 7.
    R. J. Soberman, T. W. Harper, D. Betteridge, R. A. Lewis, and K. F. Austen, Characterization and separation of the arachidonic acid 5-lipoxygenase and linoleic acid w-6 lipoxygenase (arachidonic acid 15-lipoxygenase) of human polymorphonuclear leukocytes, J. Biol. Chem. 260: 4508 (1985).PubMedGoogle Scholar
  8. 8.
    C. A. Rouzer and B. Samuelsson, On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors, Proc. Natl. Acad. Sci. USA 82: 6040 (1985).CrossRefGoogle Scholar
  9. 9.
    N. Ueda, S. Kaneko, T. Yoshimoto, and S. Yamamoto, Purification of arachidonate 5-lipoxygenase from porcine leukocytes and its reactivity with hydroperoxyeicosatetraenoic acids, J. Biol. Chem. 261: 7982 (1986).PubMedGoogle Scholar
  10. 10.
    A. M. Goetze, L. Fayer, J. Bouska, D. Bornemeier, and G. W. Carter, Purification of a mammalian 5-lipoxygenase from rat basophilic leukemia cells, Prostaglandins 29: 689 (1985).CrossRefGoogle Scholar
  11. 11.
    S. Yamamoto, Purification and assay of PGH synthase from bovine seminal vesicles, in: “Methods in Enzymology, Vol 86, ” W. E. M. Lands and W. L. Smith, eds., Academic Press, New York (1982).Google Scholar
  12. 12.
    S. Narumiya, J. A. Salmon, L. H. Coltee, B. G. Weatherly, and R. J. Flower, Arachidonic acid 15-lipoxygenase from rabbit peritoneal polymorphonuclear leukocytes: partial purification and properties, J. Biol. Chem. 256: 9583 (1981).PubMedGoogle Scholar
  13. 13.
    W. E. M. Lands, Interactions of lipid hydroperoxides with eicosanoid biosynthesis, J. Free Radic. Biol. Med. 1: 97 (1985).CrossRefGoogle Scholar
  14. 14.
    C. C. Reddy, M. K. Rao, A. M. Mastro, and R. W. Egan, Measurement of glutathione requiring enzymes involved in arachidonic acid cascade of rat basophil leukemia cells, Biochem. Int. 9: 755 (1984).Google Scholar
  15. 15.
    C. A. Rouzer, T. Matsumoto, and B. Samuelsson, Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities, Proc. Natl. Acad. Sci. USA 83: 857 (1986).CrossRefGoogle Scholar
  16. 16.
    R. L. Maas, C. D. Ingram, D. F. Taber, J. A. Oates, and A. R. Brash, Stereospecific removal of the DR hydrogen atom at the 10-carbon of arachidonic acid in the biosynthesis of leukotriene A4 by human leukocytes, J. Biol. Chem. 257: 13515 (1982).PubMedGoogle Scholar
  17. 17.
    W. F. Stenson and C. W. Parker, Metabolism of arachidonic acid in ionophore-stimulated neutrophils: esterification of a hydroxylated metabolite into phospholipids, J. Clin. Invest. 64: 1457 (1979).CrossRefGoogle Scholar
  18. 18.
    J. D. Williams, T. H. Lee, R. A. Lewis, and K. F. Austen, Intracellular retention of the 5-lipoxygenase pathway product, leukotriene 84, by human neutrophils activated with unopsonized zymosan, J. Immunol. 134: 2624 (1985).PubMedGoogle Scholar
  19. 19.
    R. L. Maas, J. Turk, J. A. Oates, and A. Brash, Formation of a novel dihydroxy acid from arachidonic acid by lipoxygenase-catalyzed double oxygenation in rat mononuclear cells and human leukocytes, J. Biol. Chem. 257: 7056 (1982).PubMedGoogle Scholar
  20. 20.
    C. N. Serhan, M. Hamberg, and B. Samuelsson, Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem. Biophys. Res. Commun. 118: 943 (1984).CrossRefGoogle Scholar
  21. 21.
    C. N. Serhan, M. Hamberg, B. Samuelsson, J. Morris, and D. G. Wishka, On the stereochemistry and biosynthesis of lipoxin B, Proc. Natl. Acad. Sci. USA 83: 1983 (1986).CrossRefGoogle Scholar
  22. 22.
    T. H. Lee, R. L. Hoover, J. D. Williams, R. I. Sperling, J. R. Ravalese, III, B. W. Spur, D. R. Robinson, E. J. Corey, R. A. Lewis, and K. F. Austen, Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function, N. Engl. J. Med. 312: 1217 (1985).CrossRefGoogle Scholar
  23. 23.
    S. Fischer, C. von Schacky, W. Siess, T. Strasser, and P. C. Weber, Uptake, release and metabolism of docosahexaenoic acid (DHA C22:6 3) in human platelets and neutrophils, Biochem. Biophys. Res. Commun. 120: 907 (1984).CrossRefGoogle Scholar
  24. 24.
    T. H. Lee, J. M. Mencia-Huerta, C. Shih, E. J. Corey, R. A Lewis, and K. F. Austen, Effects of exogenous arachidonic, eicosapentaenoic, and docosahexaenoic acids on the generation of 5-lipoxygenase pathway products by ionophore-activated human neutrophils, J. Clin. Invest. 74: 1922 (1984).CrossRefGoogle Scholar
  25. 25.
    Radmark, C. Malmsten, B. Samuelsson, D. A. Clark, G. Goto, A. Marfat, and E. J. Corey, Leukotriene A: stereochemistry and enzymatic conversion to leukotriene B, Biochem. Biophys. Res. Commun. 92: 954 (1980).CrossRefGoogle Scholar
  26. 26.
    Radmark, T. Shimizu, M. Jörnvall, and B. Samuelsson, Leukotriene A4 hydrolase in human leukocytes. Purification and properties, J. Biol. Chem. 259: 12339 (1984).Google Scholar
  27. 27.
    C. A. Dahinden, R. M. Clancy, M. Gross, J. M. Chiller, and T. E. Hugli, Leukotriene C4 production by murine mast cells: evidence for a role for extracellular leukotriene A4, Proc. Natl. Acad. Sci. USA 82: 6632 (1985).CrossRefGoogle Scholar
  28. 28.
    J. E. McGee and F. A. Fitzpatrick, Erythrocyte-neutrophil interactions: formation of leukotriene 84 by transcellular biosynthesis, Proc. Natl. Acad. Sci. USA 83:1349 (1986)CrossRefGoogle Scholar
  29. 29.
    F. A. Fitzpatrick, W. Liggett, J. McGee, S. Bunting, D. Morton, and B. Samuelsson, Metabolism of leukotriene A4 by human erythrocytes. A novel cellular source of leukotriene B4, J. Biol. Chem. 259: 11403 (1985).Google Scholar
  30. 30.
    S. J. Feinmark and P. J. Cannon, Endothelial cell leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes, J. Biol. Chem. 261: 16466 (1986).PubMedGoogle Scholar
  31. 31.
    C. R. Pace-Asciak, J. Klein, and S. P. Spielberg, Metabolism of leukotriene A4 into C4 by human platelets, Biochim. Biophys. Acta 877: 68 (1986).CrossRefGoogle Scholar
  32. 32.
    F. A. Fitzpatrick, J. Haeggström, E. Granström, and B. Samuelsson, Metabolism of leukotriene A4 by an enzyme in blood plasma, Proc. Natl. Acad. Sci. USA 80: 5425 (1983).CrossRefGoogle Scholar
  33. 33.
    D. J. Nathaniel, J. F. Evans, Y. Leblanc, C. Leveille, B. J. Fitzsimmons, and A. W. Ford-Hutchinson, Leukotriene A5 is a substrate and an inhibitor of rat and human neutrophil LTA4 hydrolase, Biochem. Biophys. Res. Commun. 131: 827 (1985).CrossRefGoogle Scholar
  34. 34.
    M. K. Bach, J. R. Brashler, and D. R. Morton, Jr., Solubilization and characterization of the leukotriene C4 synthetase of rat basophil leukemia cells: a novel, particulate glutathione-S-transferase. Arch. Biochem. Biophys. 230: 455 (1984).CrossRefGoogle Scholar
  35. 35.
    T. Yoshimoto, R. J. Soberman, R. A. Lewis, and K. F. Austen, Isolation and characterization of leukotriene C4 synthetase of rat basophilic leukemia cells, Proc. Natl. Acad. Sci. USA 82: 8399 (1985).CrossRefGoogle Scholar
  36. 36.
    T. Yoshimoto, R. J. Soberman, B. Spur, and K. F. Austen, Properties of highly purified leukotriene C4 synthase of guinea pig lung, J. Clin. Invest. 81: 866 (1988).CrossRefGoogle Scholar
  37. 37.
    P. F. Weller, C. W. Lee, D. W. Foster, E. J. Corey, K. F. Austen,and R. A. Lewis, Generation and metabolism of 5-lipoxygenase pathway leukotrienes by human eosinophils: predominant production of leukotriene C4, Proc. Natl. Acad. Sci. USA 80: 7626 (1983).CrossRefGoogle Scholar
  38. 38.
    R. J. Shaw, O. Cromwell, and A. B. Kay, Preferential generation of leukotriene C4 by human eosinophils, Clin. Exp. Immunol. 56: 716 (1984).Google Scholar
  39. 39.
    W. R. Henderson, J. B. Harley, and A. S. Fauci, Arachidonic acid metabolism in normal and hypereosinophilic syndrome human eosinophils: generation of leukotriene 84, C4, D4,and 15-lipoxygenase products, Immunology 51: 679 (1984).PubMedPubMedCentralGoogle Scholar
  40. 40.
    S. P. Peters, D. W. MacGlashan, Jr., E. S. Schulman, R. P. Schleimer,E. C. Hayes, J. Rokach, N. F. Adkinson, Jr., and L. M. Lichtenstein, Arachidonic acid metabolism in purified human lung mast cells, J. Immunol. 132: 1972 (1984).Google Scholar
  41. 41.
    F. Levi-Schaffer, K. F. Austen, J. P. Caulfield, A. Hein, P. M. Gravallese, and R. L. Stevens, Co-culture of human lung-derived mast cells with mouse 3T3 fibroblasts: morphology and IgE-mediated release of histamine, prostaglandin D2, and leukotrienes, J. Immunol. 129: 494 (1987).Google Scholar
  42. 42.
    A. 0. S. Fels, N. A. Pawlowski, E. B. Cramer, T. K. C. King, Z. A. Cohn, and W. A. Smith, Human alveolar macrophages produce leukotriene 84, Proc. Natl. Acad. Sci. USA 79: 7866 (1982).CrossRefGoogle Scholar
  43. 43.
    J. MacDermott, C. R. Kelsey, K. A. Waddell, R. Richmond, R. K. Knight, P. J. Cole, C. T. Dollery, D. N. Landon, and I. A. Blair, Synthesis of leukotriene 84 and prostanoids by human alveolar macrophages: analysis by gas chromatography/mass spectrometry, Prostaglandins 27: 163 (1984).CrossRefGoogle Scholar
  44. 44.
    T. R. Martin, L. C. Altman, R. K. Albert, and W. R. Henderson, Leukotriene 84 production by the human alveolar macrophage: a potential mechanism for amplifying inflammation in the lung, Am. Rev. Respir. Dis. 129: 106 (1984).CrossRefGoogle Scholar
  45. 45.
    W. F. Owen, jr., R. J. Soberman, T. Yoshimoto, A. L. Sheffer, R. A. Lewis, and K. F. Austen, Synthesis and release of leukotriene C4 by human eosinophils, J. Immunol. 138: 532 (1987).PubMedGoogle Scholar
  46. 46.
    J. D. Williams, J. K. Czop, and K. F. Austen, Release of leukotrienes by human monocytes on stimulation of their phagocytic receptor for particulate activators, J. Immunol. 132: 3034 (1984).PubMedGoogle Scholar
  47. 47.
    M. E. Goldyne, G. F. Burrish, P. Poubelle, and P. Borgeat, Arachidonic acid metabolism among human mononuclear leukocytes: lipoxygenase released pathways, J. Biol. Chem. 259: 8815 (1984).PubMedGoogle Scholar
  48. 48.
    J. K. Czop and K. F. Austen, Generation of leukotrienes by human monocytes upon stimulation of their B-glucan receptor during phagocytosis, Proc. Natl. Acad. Sci. USA 82: 2751 (1985).CrossRefGoogle Scholar
  49. 49.
    J. D. Williams, J. L. Robin, R. A. Lewis, T. H. Lee, and K. F. Austen, Generation of leukotrienes by human monocytes pretreated with cytochalasin B and stimulated with formyl-methionyl-leucyl-phenylalanine, J. Immunol. 136: 642 (1986).PubMedGoogle Scholar
  50. 50.
    W. Jubiz, O. Râdmark, C. Malmsten, G. Hansson, J. A. Lindgren, J. Palmblad, A. M. Udén, and B. Samuelsson, A novel leukotriene produced by stimulation of leukocytes with formylmethionylleucyl-phenylalanine, J. Biol. Chem. 257: 6106 (1982).PubMedGoogle Scholar
  51. 51.
    W. S. Powell, Properties of leukotriene 84 20-hydroxylase from polymorphonuclear leukocytes, J. Biol. Chem 259: 3082 (1984).PubMedGoogle Scholar
  52. 52.
    S. Shak and I. M. Goldstein, Omega-oxidation is the major pathway for the catabolism of leukotriene 84 in human polymorphonuclear leukocytes, J. Biol. Chem. 259: 10181 (1984).PubMedGoogle Scholar
  53. 53.
    R. J. Soberman, R. W. Harper, R. C. Murphy, and K. F. Austen, Identification and functional characterization of leukotriene 84 20-hydroxylase of human polymorphonuclear leukocytes, Proc. Natl. Acad Sci. USA 82: 2292 (1985).CrossRefGoogle Scholar
  54. 54.
    S. Shak and I. Goldstein, Leukotriene 84 w-hydroxylase in human polymorphonuclear leukocytes, J. Clin. Invest. 76: 1218 (1985).CrossRefGoogle Scholar
  55. 55.
    D. E. Williams, S. E. Hale, R. T. Okita, and B. S. Masters, A prostaglandin omega-hydroxylase cytochrome P-450 (P-450PG-omega) purified from lungs of pregnant rabbits, J. Biol. Chem. 259: 14600 (1984).PubMedGoogle Scholar
  56. 56.
    R. J. Soberman, R. T. Okita, B. Fitzsimmons, J. Rokach, B. Spur, and K. F. Austen, Stereochemical requirements for substrate specificity of LTB4 20-hydroxylase, J. Biol. Chem. 262: 12421 (1986).Google Scholar
  57. 57.
    H. Sumimoto, K. Takeshige, and S. Minakami, NAD+-dependent conversion of 20-OH-LTB4 to 20-COOH-B by a cell-free system of human polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 132: 864 (1985).CrossRefGoogle Scholar
  58. 58.
    D. W. Goldman and E. J. Goetzl, Specific binding of leukotriene B4 to receptors on human polymorphonuclear leukocytes, J. Immunol. 129: 1600 (1982).PubMedGoogle Scholar
  59. 59.
    R. A. Kreisle and C. W. Parker, Specific binding of leukotriene B4 to a receptor on human polymorphonuclear leukocytes, J. Exp. Med. 157: 628 (1983).CrossRefGoogle Scholar
  60. 60.
    D. W. Goldman and E. J. Goetzl, Heterogeneity of human polymorphonuclear leukocyte receptors for leukotriene B4: identification of a subset of high affinity receptors that transduce the chemotactic response, J. Exp. Med. 159: 1027 (1984).CrossRefGoogle Scholar
  61. 61.
    A. H. Lin, P. L. Ruppel, and R. R. Gorman, Leukotriene B4 binding to human neutrophils, Prostaglandins 28: 837 (1984).CrossRefGoogle Scholar
  62. 62.
    R. M. Clancy, C. A. Dahinden, and T. E. Hugli, Oxidation of leukotrienes at the omega end: demonstration of a receptor for the 20-hydroxy derivative of leukotriene B4 on human neutrophils and implications for the analysis of leukotriene receptors, Proc. Natl. Acad. Sci. USA 81: 5729 (1984).CrossRefGoogle Scholar
  63. 63.
    C. W. Lee, R. A. Lewis, E. J. Corey, and K. F. Austen, Conversion of leukotriene D4 to leukotriene E4 by a dipeptidase released from the specific granule of human polymorphonuclear leukocytes, Immunology 48: 27 (1983).PubMedPubMedCentralGoogle Scholar
  64. 64.
    S. S. Tate and A. Meister, Gamma-glutamyl transpeptidase: catalytic, structural and functional aspects, Monogr. Cell Biochem. 39: 357 (1981).CrossRefGoogle Scholar
  65. 65.
    T. W. Harper, J. Y. Westcott, N. Voelkel, and R. C. Murphy, Metabolism of leukotrienes B4 and C4 in the isolated perfused rat lung, J. Biol. Chem. 259: 14437 (1984).PubMedGoogle Scholar
  66. 66.
    R. A. Lewis, J. M. Drazen, J. C. Figueiredo, E. J. Corey, and K. F. Austen, A review of recent contributions on biologically active products of arachidonate conversion, Int. J. Immunopharm. 4: 85 (1982).CrossRefGoogle Scholar
  67. 67.
    C. W. Parker, D. Koch, M. M. Huber, and S. F. Falkenhein, Formation of the cysteinyl form of slow reacting substance (leukotriene E4) in human plasma, Biochem. Biophys. Res. Commun. 97: 1038 (1980).CrossRefGoogle Scholar
  68. 68.
    C. W. Lee, R. A. Lewis, E. J. Corey, A. Barton, H. Oh, A. I. Tauber, and K. F. Austen, Oxidative inactivation of leukotriene C4 by stimulated human polymorphonuclear leukocytes, Proc. Natl Acad. Sci. USA 79: 4166 (1982)CrossRefGoogle Scholar
  69. 69.
    C. W. Lee, R. A. Lewis, A. I. Tauber, M. M. Mehrotra, E. J. Corey, and K. F. Austen, The myeloperoxidase-dependent metabolism of leukotrienes C4, D4, and E4 to 6-trans-leukotriene 84 diastereoisomers and the subclass-specific S-diastereoisomeric sulfoxides, J. Biol. Chem. 258: 15004 (1983).PubMedGoogle Scholar
  70. 70.
    M. A. Neill, W. R. Henderson, and S. J. Klebanoff, Oxidative degradation of leukotriene C4 by human monocytes and monocyte-derived macrophages, J. Exp. Med. 162: 1634 (1985).CrossRefGoogle Scholar
  71. 71.
    L. örning, E. Norin, B. Gustafsson, and S. Hammarström, In vivo metabolism of leukotriene C4 in germ-free and conventional rats: fecal excretion of N-acetyl leukotriene E4, J. Biol. Chem. 261:766 (1986).Google Scholar
  72. 72.
    L. örning, L. Kaijser, and S. Hammarström, In vivo metabolism of leukotriene C4 in man: urinary excretion of leukotriene E4, Biochem. Biophys. Res. Commun. 130:214 (1985).Google Scholar
  73. 73.
    S. Hammarström, L. örning, N. Bernström, B. Gustafsson, E. Norin, and L. Kaijser, Metabolism of leukotriene C4 in rats and humans. Adv. Prost. Thromb. Leuk. Res. 15: 185 (1985).Google Scholar
  74. 74.
    R. I. Sperling, M. Weinblatt, J. L. Robin, J. Ravalese III, R. L. Hoover, F. House, J. S. Coblyn, P. A. Fraser, B. W. Spur, D. R. Robinson, R. A. Lewis, and K. F. Austen, Effects of dietary supplementation with marine fish oil on leukocyte lipid mediator generation and function in rheumatoid arthritis, Arth. Rheum. 30: 988 (1987).Google Scholar
  75. 75.
    R. I. Sperling, J. L. Robin, K. A. Kylander, T. H. Lee, R. A. Lewis, and K. F. Austen, The effects of N-3 polyunsaturated fatty acids on the generation of platelet-activating factor-acether by human monocytes, J. Immunol. 139: 4186 (1987).PubMedGoogle Scholar
  76. 76.
    A. J. Dessein, T. H. Lee, P. Elsas, J. R. Ravalese III, D. Silberstein, J. R. David, K. F. Austen, and R. A. Lewis, Enhancement by monokines of leukotriene generation by human eosinophils and neutrophile stimulated with calcium ionophore A23187, J. Immunol. 136: 3829 (1986).PubMedGoogle Scholar
  77. 77.
    D. S. Silberstein, W. F. Owen, J. C. Gasson, J. F. DiPersio, D. W. Golde, J. C. Bina, R. J. Soberman, K. F. Austen, and J. R. David, Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor, J. Immunol. 137: 3290 (1986).PubMedGoogle Scholar
  78. 78.
    M. E. Rothenberg, W. F. Owen Jr., D. S. Silberstein, J. Woods, R. J. Soberman, K. F. Austen, and R. L. Stevens, Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin-3, J. Clin. Invest. 81: 1986 (1988).CrossRefGoogle Scholar
  79. 79.
    J. A. Rankin, C. E. Schrader, S. M. Smith, and R. A. Lewis, Recombinant gamma-interferon primes alveolar macrophages cultured in vitro for the release of leukotriene 84 in response to IgG stimulation, J. Clin. Invest. (in press).Google Scholar
  80. 80.
    J. L. Robin, D. C. Seldin, K. F. Austen, and R. A. Lewis, Regulation of mediator release from mouse bone marrow-derived mast cells by glucocorticoids, J. Immunol. 135: 2719 (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Robert A. Lewis
    • 1
  1. 1.Syntex ResearchSyntex CorporationPalo AltoUSA

Personalised recommendations