Advertisement

Producing Herbicide Tolerant Populus Using Genetic Transformation Mediated by Agrobacterium Tumefaciens C58: A Summary of Recent Research

  • Don E. Riemenschneider
  • Bruce E. Haissig
Part of the NATO ASI Series book series (NSSA, volume 210)

Abstract

We tested the hypothesis that genetic transformation mediated by Agrobacterium tumefaciens strain C58 will produce Populus with better than normal tolerance of the herbicide Roundup (glyphosate). The basic strategy was so-called target enzyme protection. Using a binary C58-based vector, T-DNA from two engineered plasmids (pPMG 85/587 or pCGN 1107) was separately inserted into Populus alba x P. grandidentata cv. ‘Crandon.’ Both these plasmids contained a bacterial gene (aroA) that encodes a chimeric 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase that tolerates Roundup better than normal enzyme. Compared to plasmid pPMG 85/587, pCGN 1107 contained a better gene promoter and added coding to help movement of chimeric EPSP synthase from cytoplasm to chloroplasts. Transformations with plasmid pPMG 85/587 yielded normal greenhouse plants with aroA and increased Roundup tolerance. This was the first transformation and regeneration of a woody plant with an important gene. Southern blots of greenhouse plants from tissues transformed with pCGN 1107 also showed that aroA was present; hence, plants were produced wherein chimeric EPSP synthase was targeted for chloroplast expression. Roundup tolerance tests of those plants are underway. A host range study revealed that C58 transforms Populus of diverse ancestry. But, parental genotype governs whether a progeny is susceptible or resistant to C58.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester, E.W., and Gordon, M.P., 1984, T-DNA of Agrobacterium turnefaciens encodes an enzyme of cytokinin biosynthesis, Proc. Natl. Acad. Sci. USA 81:5994–5998.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ausubel, F.M, Brent, R., Kingston, R., Moore, D., Smith, J., Seidman, J., and Struhl, K., 1987, “Current Protocols in Molecular Biology,” John Wiley & Sons, New York.Google Scholar
  3. 3.
    Bolton, G.W., Nester, E.W., and Gordon, M.P., 1986, Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence, Science 232:983–985.CrossRefPubMedGoogle Scholar
  4. 4.
    Chilton, M-D., Currier, T.C., Farrand, S.K., Bendich, A.J., Gordon, M.P., and Nester, E.W., 1974, Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors, Proc. Natl. Acad. Sci. USA 71:3672–3676.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Christou, P., Platt, S.G., and Ackerman, M.C., 1986, Opine synthesis in wild-type plant tissue, Plant Physiol. 82:218–221.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Comai, L., Sen, L., and Stalker, D., 1983, An altered aroA gene product confers resistance to the herbicide glyphosate, Science 221:370–371.CrossRefPubMedGoogle Scholar
  7. 7.
    Comai, L., Facciotti, D., Hiatt, W.R., Thompson, G., Rose, R.E., and Stalker, D.M., 1985, Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate, Nature 317:741–744.CrossRefGoogle Scholar
  8. 8.
    Davis, T.D., and Haissig, B.E., 1990, Chemical control of adventitious root formation by cuttings, Plant Growth Regul. Soc. Amer. Quart. (in press).Google Scholar
  9. 9.
    DeCleene, M., 1988, The susceptibility of plants to Agrobacterium: A discussion of the role of phenolic compounds, FEMS Microbiol. Rev. 54:1–8.CrossRefGoogle Scholar
  10. 10.
    della-Cioppa, G., Bauer, S.C., Taylor, M.L., Rochester, D.E., Klein, B.K., Shah, D.M., Fraley, R.T., and Kishore, G.M., 1987, Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants, Bio/Technology 5:579–584.Google Scholar
  11. 11.
    Feinberg, A. P., and Vogelstein, B., 1983, A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity, Anal. Biochem. 132:6–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Feinberg, A. P., and Vogelstein, B., 1984, A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity, Addendum Anal. Biochem. 137:266–267.Google Scholar
  13. 13.
    Fillatti, J.J., McCown, B.H., Sellmer, J., and Haissig, B., 1986, The introduction and expression of a gene conferring tolerance to the herbicide glyphosate in Populus NC-5339, pp. 83–84, in: Proc. TAPPI Res. and Dev. Conf., Raleigh, NC.Google Scholar
  14. 14.
    Fillatti, J.J., Kiser, J., Rose, R., and Comai, L., 1987a, Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector, Bio/Technology 5:726–730.Google Scholar
  15. 15.
    Fillatti, J.J., Sellmer, J., McCown, B., Haissig, B., and Comai, L. 1987b. Agrobacterium-mediated transformation and regeneration of Populus, Mol. Gen. Genet. 206:192–199.CrossRefGoogle Scholar
  16. 16.
    Fillatti, J.J., Haissig, B., McCown, B., Cornai, L., and Riemenschneider, D., 1988, The development of glyphosate-tolerant Populus plants through expression of a mutant aroA gene from Salmonella typhimurium. pp. 243–249, in: “Genetic Manipulation of Woody Plants,” J.W. Hanover and D. Keathley, eds., Plenum Press, New York.Google Scholar
  17. 17.
    Gasser, C.S., and Fraley, R.T., 1989, Genetically engineering plants for crop improvement, Science 244:1293–1299.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Haissig, B.E., 1989, Status of forest tree vegetative regeneration for biotechnology, Amer. Biotech. Lab. 7(1):48–51.Google Scholar
  19. 19.
    Haissig, B.E., and Riemenschneider, D.E., 1988, Genetics of adventitious rooting, pp. 47–60, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Advances in Plant Sciences Series, Vol. 2, Dioscorides Press, Portland, OR.Google Scholar
  20. 20.
    Haissig, B.E., Nelson, N.D., and Kidd, G.H., 1987, Trends in the use of tissue culture in forest improvement, Bio/Technology 5:52–56 and 59.Google Scholar
  21. 21.
    Haissig, B.E., and Riemenschneider, D.E., 1990, Strategic planning for application of biotechnology in woody plant genetics and breeding, in: “Micropropagation of Woody Plants”, M.R. Ahuja, ed., Kluwer Academic Pubs., Dordrecht, Boston, Lancaster (in press).Google Scholar
  22. 22.
    Hansen, E.A. (Compiler), “Intensive Plantation Culture: 12 Years Research,” Gen. Tech. Rept. NC-91, USDA Forest Service, North Central Forest Experiment Station, St. Paul, MN, (1983).Google Scholar
  23. 23.
    Hansen, E.A., and Netzer, D.A., “Weed Control Using Herbicides in Short-Rotation Intensively Cultured Poplar Plantations,” Res. Pap. NC-260, USDA For. Serv., North Central For. Exp. Sta., St. Paul, MN, (1986). Google Scholar
  24. 24.
    Harry, D.E., and Sederoff, R.R., “Biotechnology in Biomass Crop Production. The Relationship of Biomass Production and Plant Genetic Engineering,” Pub. No. 3411, Oak Ridge Nat. Lab., Environmental Sci. Div., Oak Ridge, TN, (1989).Google Scholar
  25. 25.
    Horsch, R.B., Fry, J.B., Hoffman, N.L., Wallroth, M., Eichholtz, D., Rogers, S.G., and Fragley, R.T., 1985, A simple and general method for transferring genes into plants, Science 227:1229–1231.CrossRefGoogle Scholar
  26. 26.
    Larson, P.R., and Isebrands, J.G., 1971, The plastochron index as applied to developmental studies of cottonwood, Can. J. For. Res. 1:1–11.CrossRefGoogle Scholar
  27. 27.
    Maniatis T., Fritsche, E.F., and Sambrook, J., “Molecular Cloning: A Laboratory Manual, ” Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, (1982).Google Scholar
  28. 28.
    Mazur, B.J., and Falco, S.C., 1989, The development of herbicide resistant crops, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:441–470.CrossRefGoogle Scholar
  29. 29.
    McCown, B.H., 1985, From gene manipulation to forest establishment: shoot cultures of woody plants can be a central tool, TAPPI J. 68:116–119.Google Scholar
  30. 30.
    Michler, C.H., and Haissig, B.E., 1988, Increased herbicide tolerance of in vitro selected hybrid poplar, pp. 183–188, in: “Somatic Cell Genetics of Woody Plants,” M.R. Ahuja, ed., Kluwer Academic Pubs., Dordrecht, Boston, London.CrossRefGoogle Scholar
  31. 31.
    Mousdale, D. N., and Coggins, J.R., 1985, Subcellular localization of the common shikimate-pathway enzyme in Pisum sativum. Planta 163:241–249.CrossRefPubMedGoogle Scholar
  32. 32.
    Murashige, T., and Skoog, F., 1962, A revised medium for rapid growth and bioassays with tobacco tissue culture, Physiol. Plant. 15:473–497.CrossRefGoogle Scholar
  33. 33.
    Nelson, N.D., and Haissig, B.E., 1986, Herbicide stress: use of biotechnology to confer herbicide resistance to selected woody plants, in: “Stress Physiology and Forest Productivity,” Hennessey T.C., Dougherty P.M., Kossuth, J.D. Johnson, eds., Martinus Nijhoff/Dr. W. Junk Pubs., The Hague, The Netherlands.Google Scholar
  34. 34.
    Nester, E.W. and Kosuge, T., 1981, Plasmids specifying plant hyperplasias, Annu. Rev. Microbiol. 35:531–565.CrossRefPubMedGoogle Scholar
  35. 35.
    Odell, J.T., Nagy, F., and Chua, N.H., 1985, Identification of DNA sequences required for activity of cauliflower mosaic virus 35S promoter, Nature 313:810–812.CrossRefPubMedGoogle Scholar
  36. 36.
    Otten, L.A.B.M., and Schilperoort, R.A., 1978, A rapid micro scale method for the detection of lysopine and nopaline dehydrogenase activities, Biochim. Biophys. Acta 527:497–500.CrossRefPubMedGoogle Scholar
  37. 37.
    Parsons, T.J., Sinkar, V.P., Stettier, R.F., Nester, E.W., and Gordon, M.P., 1986, Transformation of poplar by Agrobacterium tumefaciens. Bio/Technology 4:533–536.Google Scholar
  38. 38.
    Pythoud, F., Sinkar, V.P., Nester, E.W., and Gordon, M.P., 1987, Increased virulence of Agrobacterium rhizogenes conferred by the vir region of pTiBo542: Application to genetic engineering of poplar, Bio/Technology 5:1323–1327.Google Scholar
  39. 39.
    Reiss, B., Sprengle, R., Will, H., and H. Schaller, 1984, A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell extracts, Gene 30:211–217.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Riemenschneider, D.E., Haissig, B.E., and Bingham, E.T., 1988a, Integrating genetic manipulation into plant breeding programs, pp. 433–451, in: “Genetic Manipulation of Woody Plants,” J.W. Hanover and D. Keathley, eds., Plenum Press, New York.Google Scholar
  41. 41.
    Riemenschneider, D.E., Haissig, B., and Michler, C., 1988b, Genetic effects on adventitious rooting in vitro in Populus deltoides. In Vitro Part II 24(3):52A.Google Scholar
  42. 42.
    Riemenschneider, D.E., Haissig, B.E., Sellmer, J., and Fillatti, J.J., 1988c, Expression of an herbicide tolerance gene in young plants of a transgenic hybrid poplar clone, pp. 73–80, in: M.R. Ahuja, ed., Somatic Cell Genetics of Woody Plants, Kluwer Academic Pubs., Dordrecht, Boston, London.CrossRefGoogle Scholar
  43. 43.
    Schaeffer, W.I., 1989, Terminology associated with cell, tissue and organ culture, molecular biology and molecular genetics, TCA Rept. 23(5):5–6, 11–13.Google Scholar
  44. 44.
    Schreier, P.H., Seftor, E.A., Schell, J., and Bohnert, H.J., 1985, The use of nuclear-encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts, EMBO J. 4:25–32.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Sellmer, J.C., and McCown, B.H., 1989, Transformation in Populus spp. pp. 155–172, in: “Biotechnology in Agriculture and Forestry”, Vol. 9, “Plant Protoplasts and Genetic Engineering II,” Y.P.S. Bajaj, ed., Springer-Verlag, Heidelberg, West Germany.Google Scholar
  46. 46.
    Sellmer, J.C., McCown, B.H., and Haissig, B.E., 1989, Shoot culture dynamics of six Populus clones, Tree Physiol. 5:219–227.CrossRefPubMedGoogle Scholar
  47. 47.
    Shah, D.M., Horsch, R.B., Klee, H.J., Kishore, G.M., Winter, J.A., Turner, N.E., Hironaka, C.M., Sanders, P.R., Gasser, C.S., Aykent, S., Siegel, N.R., Rogers, S.G., and Fraley, R.T., 1986, Engineering herbicide tolerance in transgenic plants, Science 233:478–481.CrossRefPubMedGoogle Scholar
  48. 48.
    Stachel, S.E., Messens, E., Van Montagu, M., and Zambryski, P., 1985, Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629.CrossRefGoogle Scholar
  49. 49.
    Stalker, D.M., Hyatt, W.R., and Comai, L., 1985, A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate, J. Biol. Chem. 260:4724–4728.PubMedGoogle Scholar
  50. 50.
    Thomashow, M.F., Hugly, S., Buchholz, W.G., and Thomashow, L.S., 1986, Molecular basis for the auxin-independent phenotype of crown gall tumor tissues, Science. 231:616–618.CrossRefGoogle Scholar
  51. 51.
    Van den Broeck, G., Timko, M.P., Kausch, A.P., Cashmore, A.R., Van Montagu, M., and Herrera-Estrella, L., 1985, Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase, Nature 313:358–363.CrossRefPubMedGoogle Scholar
  52. 52.
    Wasmann, C.C., Reiss, B., Barlett, S.G., and Bohnert, H.J., 1986, The importance of the transit peptide and the transported protein for protein import into chloroplasts, Mol. Gen. Genet. 205:446–453.CrossRefGoogle Scholar
  53. 53.
    Watson, B., Currier, T.C., Gordon, M.P., Chilton, M.-D., and Nester, E.W., 1975, Plasmid required for virulence of Agrobacterium tume-faciens. J. Bacteriol. 123:255–264.PubMedPubMedCentralGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Don E. Riemenschneider
    • 1
  • Bruce E. Haissig
    • 1
  1. 1.North Central Experiment Station, Forestry Sciences LaboratoryUSDA Forest ServiceRhinelanderUSA

Personalised recommendations