Advertisement

Laser-Induced Resonance Enhanced Multiphoton Ionization in Supersonic Beams

  • David M. Lubman
Part of the NATO ASI Series book series (NSSB, volume 269)

Abstract

Supersonic jet expansions have served as a means of producing ultracold molecules for spectroscopy[1] and as an injection technique for mass spectrometry[2]. This method has been limited largely to molecules which are sufficiently volatile to be heated into the gas phase where they can be mixed with a light carrier gas such as Ar. The focus of recent work in our laboratory though, has been to extend the supersonic jet technique to nonvolatile and thermally labile molecules[3–8]. A number of techniques have been developed for entrainaient of nonvolatiles into jet expansions including pulsed laser desorption[3–8], thermospray[7,9,10], direction liquid injection[11], and supercritical fluid injection[12–14].

Keywords

Origin Band Wavelength Spectrum Pulse Valve Supersonic Beam Glycerol Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Levy, L. Wharton and R. E. Smalley, in: “Chemical and Biochemical Applications of Lasers”, Academic, New York (1977), Vol. 2, p. 1Google Scholar
  2. 1a.
    . D. H. Levy, L. Wharton and R. E. Smalley, Acc. Chem. Res. 10, (1977) 139.Google Scholar
  3. 2.
    D. M. Lubman, Anal. Chem. 31A, (1986) 59.Google Scholar
  4. 3.
    R. Tembreull and D. M. Lubman, Anal. Chem. 59, (1987) 1003CrossRefGoogle Scholar
  5. 3a.
    R. Tembreull and D. M. Lubman, Anal. Chem. 59, (1987) 1082CrossRefGoogle Scholar
  6. 3b.
    R. Tembreull and D. M. Lubman, Appl. Spectrosc. 41, (1987) 431.ADSCrossRefGoogle Scholar
  7. 4.
    L. Li and D. M. Lubman, Appl. Spectrosc. 42, (1988) 411ADSCrossRefGoogle Scholar
  8. 4a.
    L. Li and D. M. Lubman, Appl. Spectrosc. 42, (1988) 418ADSCrossRefGoogle Scholar
  9. 4b.
    L. Li and D. M. Lubman, Anal. Chem. 60, (1988) 1409CrossRefGoogle Scholar
  10. 4c.
    L. Li and D. M. Lubman, Rev. Sci. Instrum. 59, (1988) 557.ADSCrossRefGoogle Scholar
  11. 5.
    F. Engelke, J. H. Hahn, W. Henke and R. N. Zare, Anal. Chem. 59, (1987) 909CrossRefGoogle Scholar
  12. 5a.
    J. H. Hahn, R. Zenobi and R. N. Zare, J. Am. Chem. Soc. 109, (1987) 2842.CrossRefGoogle Scholar
  13. 6.
    J. Grotemeyer, U. Boesl, K. Walter and E. W. Schlag, Org. Mass Spectrom. 21, (1986) 595CrossRefGoogle Scholar
  14. 6a.
    J. Grotemeyer, U. Boesl, K. Walter and E. W. Schlag, Org. Mass Spectrom. 21 (1986) 645CrossRefGoogle Scholar
  15. 6b.
    J. Grotemeyer, U. Boesl, K. Walter and E. W. Schlag, Org. Mass Spectrom. 22, (1987) 758.CrossRefGoogle Scholar
  16. 7.
    Y. D. Park, T. R. Rizzo, L. A. Peteanu and D. H. Levy, J. Chem. Phys. 84, (1986) 6539ADSCrossRefGoogle Scholar
  17. 7a.
    T. R. Rizzo, Y. D. Park, L. Peteanu and D. H. Levy, J. Chem. Phys. 83, (1985) 4819.ADSCrossRefGoogle Scholar
  18. 8.
    J. R. Cable, M. J. Tubergen and D. H. Levy, J. Am. Chem. Soc. 109, (1987) 6198.CrossRefGoogle Scholar
  19. 9.
    C. R. Blakely and M. L. Vestal, Anal. Chem. 55, (1983) 750.CrossRefGoogle Scholar
  20. 10.
    M. L. Vestal, Anal. Chem. 56, (1984) 2590.CrossRefGoogle Scholar
  21. 11.
    T. R. Covey, E. D. Lee, A. P. Bruins and J. D. Henion, Anal. Chem. 58, (1986) 1451A.CrossRefGoogle Scholar
  22. 12.
    C. H. Sin, H. M. Pang, D. M. Lubman and J. Zorn, Anal. Chem. 58, (1986) 487CrossRefGoogle Scholar
  23. 12.
    C. H. Sin, H. M. Pang, D. M. Lubman and J. Zorn, Anal. Chem. 58, (1986) 1581.CrossRefGoogle Scholar
  24. 13.
    H. Fukuoka, T. Imasaka and N. Ishibashi, Anal. Chem. 58, (1986) 375.CrossRefGoogle Scholar
  25. 14.
    B. D. Anderson and M. V. Johnston, Appl. Spectrosc. 41, (1987) 1358.ADSCrossRefGoogle Scholar
  26. 15.
    M. A. Posthumus, P. G. Kistemaker, H. L. C. Meuzelaar and M. C. Ten Noever de Brauw, Anal. Chem. 50, (1978) 985.CrossRefGoogle Scholar
  27. 16.
    R. J. Conzenius and J. M. Capellan, Int. J. Mass Spectrom. Ion Phys. 34, (1980) 197.CrossRefGoogle Scholar
  28. 17.
    M. Barber, R. S. Bordoli, R. D. Sedgwick and A. N. Tyler, J. Chem. Soc. Chem. Commun. (1981) 325.Google Scholar
  29. 18.
    M. Barber, R. S. Bordoli, G. J. Elliot, R. D. Sedgwick and A. N. Tyler, Anal. Chem. 54, (1982) 645A.CrossRefGoogle Scholar
  30. 19.
    D. M. Lubman and R. M. Jordan, Rev. Sci. Instrum. 56, (1985) 373.ADSCrossRefGoogle Scholar
  31. 20.
    D. M. Lubman, C. T. Rettner and R. N. Zare, J. Phys. Chem. 86, (1982) 1129.CrossRefGoogle Scholar
  32. 21.
    Beam profile information courtesy of Spectra-Technology, Seattle, Washington.Google Scholar
  33. 22.
    R. Tembreull and D. M. Lubman, Anal. Chem. 56, (1984) 1962.CrossRefGoogle Scholar
  34. 23.
    A. Burger, “A Guide to the Chemical Basis of Drug Design”, John Wiley & Sons, New York (1983).Google Scholar
  35. 24.
    in: “Lasers and Mass Spectrometry”, ed. D. M. Lubman, Oxford University Press, New York (1990) Ch. 16.Google Scholar
  36. 25.
    L. Li and D. M. Lubman, Appl. Spec. 43, (1989) 543.ADSCrossRefGoogle Scholar
  37. 26.
    L. Li and D. M. Lubman, Rapid Commun. Mass Spec. 3, (1989) 12.CrossRefGoogle Scholar
  38. 27.
    U. Boesl, H. J. Neusser, and E. W. Schlag, Chem. Phys. 55 (1981) 193.CrossRefGoogle Scholar
  39. 28.
    D. M. Lubman and M. N. Kronick, Anal Chem. 54, (1982) 660.CrossRefGoogle Scholar
  40. 29.
    L. Li and D. M. Lubman, Anal Chem. 60, (1988) 2591.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • David M. Lubman
    • 1
  1. 1.Department of ChemistryThe University of MichiganAnn ArborUSA

Personalised recommendations