Advertisement

Laser Desorption of Large Molecules: Mechanisms and Models

  • A. Vertes
Part of the NATO ASI Series book series (NSSB, volume 269)

Abstract

It has always been a challenge for the practitioners of the different spectroscopic methods to volatilize large and thermally unstable molecules. Because of their thermal instability large classes of important materials, available only in solid state, were out of the scope of investigations. This was especially true in mass spectrometry, where the separation and identification of a species depended on the possibility to establish ion trajectories in vacuum.

Keywords

Large Molecule Guest Molecule Electronic Excitation Laser Desorption Rapid Comm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Beuhler, E. Flanigan, L.J. Greene and L. Friedman, J. Am. Chem. Soc. 96, 3990 (1974).CrossRefGoogle Scholar
  2. 2.
    G.D. Daves, Jr., Mass Spectrom. 12, 359 (1979).Google Scholar
  3. 3.
    R.E. Johnson, Int. J. Mass Spectrom. Ion Processes 78, 357 (1987).CrossRefGoogle Scholar
  4. 4.
    B. Lindner and U. Seydel, Anal. Chem. 57, 895 (1985).CrossRefGoogle Scholar
  5. 5.
    R. N. Zare, J. H. Hahn and R. Zenobi, Bull. Chem. Soc. Jpn. 61, 87 (1988).CrossRefGoogle Scholar
  6. 6.
    R.C. Beavis, J. Lindner, J. Grotemeyer and E.W. Schlag, Z. Naturforsch. 43a, 1083 (1988).Google Scholar
  7. 7.
    M. Karas and F. Hillenkamp, Anal. Chem. 60, 2299 (1988).CrossRefGoogle Scholar
  8. 8.
    C.H. Becker, L.E. Jusinski and L. Moro, Int. J. Mass Spectrom. Ion Processes 95, R1 (1990).CrossRefGoogle Scholar
  9. 9.
    K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida and T. Yoshida, Rapid Comm. Mass Spectrom. 2, 151 (1988).CrossRefGoogle Scholar
  10. 10.
    M. Karas, U. Bahr and F. Hillenkamp, Int. J. Mass Spectrom. Ion Processes 92, 231 (1989).CrossRefGoogle Scholar
  11. 11.
    R.C. Beavis and B.T. Chait, Rapid Comm. Mass Spectrom. 3, 233 (1989).CrossRefGoogle Scholar
  12. 12.
    M. Salehpour, I. Perera, J. Kjellberg, A. Hedin, M.A. Islamian, P. Hakansson and B.U.R. Sundqvist, Rapid Comm. Mass Spectrom. 3, 259 (1989).CrossRefGoogle Scholar
  13. 13.
    R.W. Nelson, M.J. Rainbow, D.E. Lohr and P. Williams, Science 246, 1585 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    B. Spengler and R.J. Cotter, Anal. Chem. 62, 793 (1990).CrossRefGoogle Scholar
  15. 15.
    M. Karas, U. Bahr, A. Ingendoh and F. Hillenkamp, Angew. Chem. Int. Ed., Engl. 28, 760 (1989).CrossRefGoogle Scholar
  16. 16.
    J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong and C.M. Whitehouse, Mass Spectrom. Rev. 9, 37 (1990).CrossRefGoogle Scholar
  17. 17.
    A. Vertes, P. Juhasz, M. De Wolf and R. Gijbels, Scanning Microscopy 1988/II, 1853 (1988).Google Scholar
  18. 18.
    K. Domen and T.J. Chuang, Phys. Rev. Lett. 59, 1484 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    B.J. Garrison and R. Srinivasan, J. Appl. Phys. 57, 2909 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    B. Fain, S.H. Lin and Z.W. Gortel, Surf. Sci. 213, 531 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    J.M. Philippoz, R. Zenobi and R.N. Zare, Chem. Phys. Lett. 158, 12 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    A. Vertes, M. DeWolf, P. Juhasz and R. Gijbels, Anal. Chem. 61, 1029 (1989).CrossRefGoogle Scholar
  23. 23.
    A. Vertes, P. Juhasz, L. Balazs and R. Gijbels, Microbeam Analysis 1989, 273 (1989).Google Scholar
  24. 24.
    A. Vertes, P. Juhasz, M. DeWolf and R. Gijbels, Int. J. Mass Spectrom. Ion Processes 94, 63 (1989).CrossRefGoogle Scholar
  25. 25.
    R.N. Zare and R.D. Levine, Chem. Phys. Letters 136, 593 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    T.A. Holme and R.D. Levine, Surf. Sci. 216, 587 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    M. Vestal, Mass Spectrom. Rev. 2, 447 (1983).CrossRefGoogle Scholar
  28. 28.
    J. Sunner, M.G. Ikonomou and P. Kebarle, Int. J. Mass Spectrom. Ion Processes 82, 221 (1988).CrossRefGoogle Scholar
  29. 29.
    B. Fain and S.H. Lin, Chem. Phys. Lett. 157, 233 (1989).ADSCrossRefGoogle Scholar
  30. 30.
    B. Fain and S.H. Lin, J. Chem. Phys. 91, 2726 (1989).ADSCrossRefGoogle Scholar
  31. 31.
    A. Vertes, R. Gijbels and R. D. Levine, Rapid Comm. Mass Spectrom. 4, 228 (1990).CrossRefGoogle Scholar
  32. 32.
    A. Vertes, L. Balazs and R. Gijbels, Rapid Comm. Mass Spectrom. 4, 263 (1990).CrossRefGoogle Scholar
  33. 33.
    A. Vertes and R. D. Levine, Chem. Phys. Lett. 171, 284 (1990).ADSCrossRefGoogle Scholar
  34. 34.
    D. Menzel and R. Gomer, J. Chem. Phys. 41, 3311 (1964).ADSCrossRefGoogle Scholar
  35. 35.
    P. R. Antoniewicz, Phys. Rev. B 21, 3811 (1980).ADSCrossRefGoogle Scholar
  36. 36.
    B.J. Garrison and R. Srinivasan, Appl. Phys. Lett. 44, 849 (1984).ADSCrossRefGoogle Scholar
  37. 37.
    Ph. Avouris, R. Kawai, N.D. Lang and D.M. Newns, J. Chem. Phys. 89, 2388 (1988).ADSCrossRefGoogle Scholar
  38. 38.
    F. Hillenkamp, Advances Mass Spectrom. 11A, 354 (1989).Google Scholar
  39. 39.
    B. Spengler, U. Bahr, M. Karas and F. Hillenkamp, Anal. Instr. 17, 173 (1988).CrossRefGoogle Scholar
  40. 40.
    G.J.Q. Van der Peyl, K. Isa, J. Haverkamp and P.G. Kistemaker, Nucl. Instrum. Meth. 198, 125 (1982).CrossRefGoogle Scholar
  41. 41.
    G. Gioumousis and D.P. Stevenson, J. Chem. Phys. 29, 294 (1958).ADSCrossRefGoogle Scholar
  42. 42.
    A. Vertes, P. Juhasz and R. Gijbels, Fresenius’ Z. Anal. Chem. 334, 682 (1989).Google Scholar
  43. 43.
    A. Vertes, P. Juhasz, P. Jani and A. Czytrovszky, Int. J. Mass Spectrom. Ion Processes 83, 45 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. Vertes
    • 1
  1. 1.Department of ChemistryUniversity of Antwerp (UIA)WilrijkBelgium

Personalised recommendations