Advertisement

On the Detectability of Low Velocity High Mass Ions in Matrix Assisted Laser Desorption TOF-MS

  • Raimund Kaufmann
  • Bernhard Spengler
  • Dieter Kirsch
Part of the NATO ASI Series book series (NSSB, volume 269)

Abstract

Within the last two years matrix assisted laser desorption mass spectrometry of high mass organic molecules has rapidly evolved. The range of useful matrices has been widely enlarged [1] and the demonstrated detectability now covers proteins (up to several hundred kDa), polynucleotides including large DNA fragments (see paper of P. Williams, this volume), glycoproteins and polysaccharides. The notion that this technique is restricted to UV-lasers has recently become historical after Hillenkamp et al. [2] have demonstrated infrared lasers (Er:YAG, CO2) to be as effective in high mass ion production as UV-lasers.

Keywords

Secondary Particle Secondary Electron Emission Transmitted Primary Surface Induce Dissociation Insulin Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.C. Beavis and B.T. Chait, Rapid Commun. Mass Spectrom. 3 (1989) 43.CrossRefGoogle Scholar
  2. 2.
    F. Hillenkamp, Proceedings of the 38th ASMS Conference on Mass Spectrometry and Allied Topics, June 3–8 (1990), Tucson, Arizona, p. 8.Google Scholar
  3. 3.
    R.D. Macfarlane, J.C. Hill, P.W. Geno and P.D. Mudgett, Proceedings of the Fourth Texas Symposium, College Station, 17–20 April (1988), John Wiley & Sons. p. 239.Google Scholar
  4. 4.
    R.J. Buehler and L. Friedman, IntJMass Spectrom. Ion Phys. 23, (1977) 81.CrossRefGoogle Scholar
  5. 5.
    R.J. Buehler and L. Friedman, NucUnstrum. & Meth. 170, (1980) 309.ADSGoogle Scholar
  6. 6.
    R.J. Buehler, J.Appl.Phys. 54, (1983) 4118.ADSCrossRefGoogle Scholar
  7. 7.
    A. Hedin, P. Hakansson and B.U.R. Sundqvist, IntJMass Spectrom. Ion.Proc. 75, (1987) 275.CrossRefGoogle Scholar
  8. 8.
    W. Aberth, Anal.Chem. 58, (1986) 1221.CrossRefGoogle Scholar
  9. 9.
    P.W. Geno and R.D. Macfarlane, IntJMass Spectrom. Ion Proc. 92, (1989) 195.CrossRefGoogle Scholar
  10. 10.
    G.H. Wang, W. Aberth and A.M. Falick, IntJMass Spectrom. Ion Proc. 69, (1986) 233.CrossRefGoogle Scholar
  11. 11.
    R.J. Buehler and L. Friedman, J. de Phys. 50, (1989) C2–127.Google Scholar
  12. 12.
    K.L. Schey and G. Cooks, IntJMass Spectrom. Ion Proc. 94, (1981) 1.CrossRefGoogle Scholar
  13. 13.
    M.G. Blain, S. Delia-Negra, H. Joret, Y. Le Beyec and E.A. Schweikert, J. de Phys. 50 (1989) C2–147.Google Scholar
  14. 14.
    W. Aberth and A.L. Burlinghame, in “Ion Formation From Organic Solids”, ed. A. Benninghoven, Springer-Verlag, Berlin (1983) 167.Google Scholar
  15. 15.
    Md.A. Mabusch, M.J. Dekey and R.G. Cooks, IntJMass Spectrom. Ion. Proc. 67, (1985) 285.CrossRefGoogle Scholar
  16. 16.
    B. Spengler, D. Kirsch, R. Kaufmann, M. Karas, F. Hillenkamp and U. Giessmann, Rapid Commun. Mass Spectrom. 4 (1990) 301.CrossRefGoogle Scholar
  17. 17.
    W. Aberth, Anal. Chem. 62, (1990) 609.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Raimund Kaufmann
    • 1
  • Bernhard Spengler
    • 1
  • Dieter Kirsch
    • 1
  1. 1.Institut für LasermedizinUniversität DüsseldorfDüsseldorfGermany

Personalised recommendations