Electrospray Ionization Mass Spectrometric Analysis of Proteins

  • S. K. Chowdhury
  • V. Katta
  • B. T. Chait
Part of the NATO ASI Series book series (NSSB, volume 269)


Electrospray is a ‘soft’ ionization technique in which intact gas phase ions of involatile and thermally labile biomolecules are produced directly from an analyte solution of interest at atmospheric pressure. Electrospray occurs when a strong electric field is applied to a small flow of liquid emerging through a fine capillary tube. The strong electric field causes the surface of the emerging liquid to become highly charged resulting in the formation of a fine spray of charged droplets. The solvents continuously evaporate from the droplets as the droplets proceed from atmospheric pressure to the vacuum leading to the formation of gas phase solute ions.


Capillary Tube Strong Electric Field Human Hemoglobin Electro Spray Ionization Quadrupole Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, and C.M. Whitehouse, Science, 246 (1989) 64.ADSCrossRefGoogle Scholar
  2. 2.
    R.D. Smith, J.A. Loo, C.G. Edmonds, C.J. Barinaga, and H.R. Udseth, Anal. Chem. 62 (1990) 882 and references therein.CrossRefGoogle Scholar
  3. 3.
    S.K. Chowdhury, V. Katta, and B.T. Chait, Rapid Commun. Mass Spectrom. 4 (1990) 81.CrossRefGoogle Scholar
  4. 4.
    V. Katta, S.K. Chowdhury, and B.T. Chait, Anal Chem. (submitted).Google Scholar
  5. 5.
    S.K. Chowdhury, V. Katta, and B.T. Chait, Biochem. Biophys. Res. Commun. 167 (1990) 686.CrossRefGoogle Scholar
  6. 6.
    J.B. Anderson, R.P. Andres, and J.B. Fenn., Adv. Chem. Phys. 10 (1966) 275.CrossRefGoogle Scholar
  7. 7.
    D.M. Moltz, R.A. Gough, M.S. Zisman, D.J. Vieira, H.C. Evans, and J. Cerny, Nucl. Instr. Methods 172 (1980) 507.CrossRefGoogle Scholar
  8. 8.
    I. Jardine, Nature 345 (1990) 747.ADSCrossRefGoogle Scholar
  9. 9.
    J. Darnell, H. Lodish, and D. Baltimore, Molecular Cell Biology, W.H. Freeman, NY, 1986, pp. 57–9.Google Scholar
  10. 10.
    S.K. Chowdhury, V. Katta, and B.T. Chait, J. Am. Chem. Soc. (submitted).Google Scholar
  11. 11.
    J.A. Loo, C.G. Edmonds, H.R. Udseth, and R.D. Smith, Anal. Chem. 62 (1990) 693.CrossRefGoogle Scholar
  12. 12.
    Protein Identification Resource (PIR), National Biomedical Research Foundation (NBRF) Release 19.0 (3187 December 1988).Google Scholar
  13. 13.
    S.K. Chowdhury, V. Katta, R.C Beavis, and B.T. Chait, J. Am. Soc. Mass Spectrom. 1 (1990) 382.CrossRefGoogle Scholar
  14. 14.
    M.S. Doscher and C.H.W. Hirs, Biochem. 6 (1967) 304CrossRefGoogle Scholar
  15. 14a.
    E. Gross and B. Witkop, Biochem. 6 (1967) 745.Google Scholar
  16. 15.
    J.A. Loo, C.G. Edmonds, R.D. Smith, M.P. Lacey, and T. Keough, Biomed. Environ. Mass Spectrom. 19 (1990) 286.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. K. Chowdhury
    • 1
  • V. Katta
    • 1
  • B. T. Chait
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations