Molecular Dynamics Simulation of Bulk Desorption

  • Jentaie Shiea
  • Jan Sunner
Part of the NATO ASI Series book series (NSSB, volume 269)


In static SIMS, molecular desorption may occur from the uppermost molecular surface layer by momentum transfer in the collision cascade. However, this does not seem an appropriate picture for liquid SIMS. It is widely accepted, that the neutral yield in LSIMS is large, ca. 103 in the case of glycerol[1,2]. Probably, all the molecules in a cavity centered around the original collision cascade are desorbed. This liquid-to-gas transition may occur more or less homogeneously and is conveniently termed “bulk desorption” as opposed to momentum-induced desorption. In this general sense, laser desorption and plasma desorption are most likely also bulk desorption processes.


Desorption Process Spinodal Decomposition Collision Cascade Molecular Dynamic Result Plasma Desorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.F. Jiang, E. Barofski and D.F. Barofski, Proceedings of the 36th ASMS Conference on Mass Spectrometry and Allied Topics, San Francisco, American Society for Mass Spectrometry, East Lansing, MI (1988) p.1209.Google Scholar
  2. 2.
    S.S. Wong and F.W. Rollgen, Nucl. Instrum. Meth. Phys. Res. B 14 (1986) 436.ADSCrossRefGoogle Scholar
  3. 3.
    S.J. Pachuta and R.G. Cooks, Chem. Rev. 87 (1987) 647.CrossRefGoogle Scholar
  4. 4.
    E. de Pauw, Mass Spectrom. Rev. 5 (1986) 191.CrossRefGoogle Scholar
  5. 5.
    Molecular Dynamics Simulation of Statistical-Thermodynamic Systems, ed. G. Ciccotti, North-Holland, Amsterdam (1986).Google Scholar
  6. 6.
    B.J. Garrison and N. Winograd, Science 216 (1982) 805.Google Scholar
  7. 7.
    B.J. Garrison and N. Winograd, Chem. Phys. Lett. 97 (1983) 381.ADSCrossRefGoogle Scholar
  8. 8.
    B.J. Garrison, N. Winograd, D.M. Deaven, C.T. Reimann, D.Y. Lo, T.A. Tombrello, D.E. Harrison Jr. and M.H. Shapiro, Phys. Rev. B. 37 (1988) 7197.ADSCrossRefGoogle Scholar
  9. 9.
    M. Barber, R.S. Bordoli, G.J. Elliott, R.D. Sedgwick and A.N. Tyler, Anal. Chem. 54 (1982) 645A.CrossRefGoogle Scholar
  10. 10.
    D. Fenyoe, B.U.R. Sundquist, B. Karlsson and R.E. Johnson, J. Phys., Colloq. (C2, Int. Workshop MeV keV Ions Cluster Interact. Surf. Met. 2nd, 1988) (1989) C2–33.Google Scholar
  11. 11.
    E.R. Hilf, H.F. Kammer and B. Nitzschmann, in “Ion Formation from Organic Solids, IFOS IV”, ed.A. Benninghoven, Wiley (1989) 97.Google Scholar
  12. 12.
    J. Sunner, M. Ikonomou and P. Kebarle, Int. J. Mass Spectrom. Ion Proc. 82 (1988) 221.CrossRefGoogle Scholar
  13. 13.
    F.F. Abraham, S.W. Koch and R.C. Desai, Phys. Rev. Lett. 49 (1982) 923.ADSCrossRefGoogle Scholar
  14. 14.
    W.F. van Gunsteren, in: “Mathematical Frontiers in Computational Chemical Physics”, ed. D.G. Truhlar, Springer Verlag, New York (1988), pp. 136–156.CrossRefGoogle Scholar
  15. 15.
    J. Sunner, A. Morales and P. Kebarle, Int. J. Mass Spectrom. ion Proc. 87 (1989) 287–307.CrossRefGoogle Scholar
  16. 16.
    J. Sunner, in “Ion Formation from Organic Solids, IFOS V”, eds. A. Benninghoven, B.U.R. Sundqvist and P. Hakansson, Wiley, (1990) 175.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jentaie Shiea
    • 1
  • Jan Sunner
    • 1
  1. 1.Department of ChemistryMontana State UniversityBozemanUSA

Personalised recommendations