Spatial Distribution of Biomolecules Sputtered Under Fast Heavy Ion Bombardment

  • I. S. Bitensky
  • A. M. Goldenberg
  • E. S. Parilis
Part of the NATO ASI Series book series (NSSB, volume 269)

Abstract

At present the sputtering of biomolecules under fast heavy ion bombardment has been investigated comprehensively (see, for example, Ref. [1] and the references therein). The dependence of biomolecular ion yield on the velocity, on charge state and angle of incidence of the bombarding ion, and on the energy loss and film thickness, have been studied. However, the results have varying importance for understanding the mechanism of biomolecule sputtering. For example, satisfactory agreement with measured ion yield dependence on energy loss has been obtained in theories based on rather different mechanisms: molecular desorption has been attributed to bond-breaking by electrons emerging from fast ion track [2], to shock waves [3] and to the formation of a thermal spike [4,5]. It seems that the ion yield dependence on dE/dx is only weakly sensitive to the biomolecule sputtering mechanism. It may be significant that, as presented, the models in Refs. [2–5], do not describe the yield of neutrals as a function dE/dx [6].

Keywords

Anisotropy Valine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proc. of 11 Int. Workshop on MeV and keV Ions and Cluster Interaction with Surfaces and Materials. Orsay, France, 1988, J. de Physique 50 (1989).Google Scholar
  2. 2.
    A. Hedin, P. Håkansson, B. U. R. Sundqvist and R. Johnson, Phys. Rev. B31 (1987) 1789.Google Scholar
  3. 3.
    I. S. Bitensky and E. S. Parilis, Nucl Instr. Meth. B21 (1987) 443.Google Scholar
  4. 4.
    R. Lucchese, J. Chem. Phys. 86 (1987) 443.ADSCrossRefGoogle Scholar
  5. 5.
    P. Beining, J. Sheer, E. Nieschler, B. Nees and H. Voit, Phys. Rev. B37 (1988) 9197.ADSGoogle Scholar
  6. 6.
    A. Hedin, P. Håkansson, M. Salehpour and B. U. R. Sundqvist, Phys. Rev. B35 (1987) 7377.ADSGoogle Scholar
  7. 7.
    G. Bolbach, S. Della-Negra, C. Deprun, Y. Le Beyec and K. G. Standing, Rapid Commun. Mass Spectrom. 1 (1987) 22.CrossRefGoogle Scholar
  8. 8.
    G. Save, P. Håkansson and B. U. R. Sundqvist, Nucl. Instr. Meth. B26 (1987) 259.Google Scholar
  9. 9.
    I. S. Bitensky, A. M. Goldenberg and E. S. Parilis, J. de Physique 50 (1989) 213.Google Scholar
  10. 10.
    W. Ens, B. U. R. Sundqvist, P. Håkansson, D. Fenyö, A. Hedin and G. Jonsson, J. de Physique 50 (1989) 50Google Scholar
  11. 10a.
    W. Ens, B. U. R. Sundqvist, P. Håkansson, A. Hedin and G. Jonsson, Phys. Rev. B39 (1989) 763.ADSGoogle Scholar
  12. 11.
    R. Moshammer, R. Matthäus, K. Wien and G. Bolbach, in: “Ion Formation from Organic Solids — IFOS V”, ed. A. Hedin, John Wiley and Sons, Chichester, England (1990) p. 17.Google Scholar
  13. 12.
    I. S. Bitensky, A. M. Goldenberg and E. S. Parilis, in: “Ion Formation from Organic Solids — IFOS V”, ed. A. Hedin, John Wiley and Sons, Chichester, England (1990), p. 205.Google Scholar
  14. 13.
    P. Williams and B. U. R. Sundqvist, Phys. Rev. Lett. 58 (1987) 1031.ADSCrossRefGoogle Scholar
  15. 14.
    D. Fenyö, B. U. R. Sundqvist, B. Karlson and R. Johnson, J. de Physique 50 (1989) 33.Google Scholar
  16. 15.
    R. Johnson, B. U. R. Sundqvist, A. Hedin and D. Fenyö, Phys. Rev. B40 (1989) 49.ADSGoogle Scholar
  17. 16.
    A. Hedin, P. Håkansson and B. U. R. Sundqvist, Nucl. Instr. Meth. B22 (1987) 491.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • I. S. Bitensky
    • 1
  • A. M. Goldenberg
    • 1
  • E. S. Parilis
    • 1
  1. 1.Arifov Institute of ElectronicsTashkentUSSR

Personalised recommendations