Neuroanatomy pp 117-139 | Cite as

Hippocampal Projections and Related Neural Pathways to the Mid-Brain in the Cat

  • Walle J. H. Nauta
Part of the Contemporary Neuroscientists book series (CN)

Abstract

Recent studies in the rat (Guillery, 1956; Nauta, 1956) have confirmed much earlier descriptions of widespread distributions of the fornix system to the diencephalon and the rostral mid-brain regions. Besides the well-known massive hippocampal projections to the septal region (Ganser, 1882) and the mammillary body (Gudden, 1881), fornix components have been traced from the hippocampus to the preoptic region and the hypothalamus (Cajal, 1911), to the anterior nuclear complex and rostral intralaminar nuclei of the thalamus (Gudden, 1881; Vogt, 1898; Cajal, 1911), and to the rostral part of the central grey mid-brain substance (Edinger and Wallenberg, 1902).

Keywords

Peri Encephalitis Cephalon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey, W. R., Merrillees, N. C. R., and Sunderland, S. (1956) Brain, 79, 414.CrossRefGoogle Scholar
  2. Ariens-Kappers, C. U., Huber, G. C., and Crosby, E. C. (1936) “The Comparative Anatomy of the Nervous System of Vertebrates, Including Man.” New York. Vol. II.Google Scholar
  3. Bischoff, E. (1900) Anat. Anz., 18, 348.Google Scholar
  4. Bucher, V., and Bürgi, S. (1945) Confin, neurol., 6, 317.CrossRefGoogle Scholar
  5. Bürgi, S., and Bucher, V. M. (1955) Dtsch. Z. Nervenheilk., 174, 89.Google Scholar
  6. Cajal, Ramony S. (1911) “Histologie du Système nerveux de l’Homme et des Vertébrés.” Paris, vol. II.Google Scholar
  7. Collins, E. H. (1954) J. comp. Neurol., 100, 661.CrossRefGoogle Scholar
  8. Crosby, E. C., and Woodburne, R. T. (1951) J. comp. neurol., 94, 1.CrossRefGoogle Scholar
  9. Daitz, H. M., and Powell, T. P. S. (1954) J. Neurol. Neurosurg. Psychiat., 17, 75.CrossRefGoogle Scholar
  10. Ecónomo, C. v. (1918) “Die Encephalitis lethargica.” Wien.Google Scholar
  11. Edinger, L., and Wallenberg, A. (1902) Arch. Psychiat. Nervenkr., 35, 1.CrossRefGoogle Scholar
  12. Ganser, S. (1882) Morph. Jb., 7, 591.Google Scholar
  13. Gloor, P. (1955) Electroenceph. clin. Neurophysiol., 7, 223.CrossRefGoogle Scholar
  14. Gudden, B. (1881) Arch. Psychiat. Nervenkr., 11, 428.CrossRefGoogle Scholar
  15. Gudden, B. (1889) “Gesammelte und hinterlassene Abhandlungen.” Wiesbaden.Google Scholar
  16. Guillery, R. W. (1956) J. Anat., Lond., 90, 350.Google Scholar
  17. Guillery, R. W. (1957) J. Anat., Lond., 91, 91.Google Scholar
  18. Ingram, W. R. (1940) Res. Publ. Ass. nerv. ment. Dis., 20, 195.Google Scholar
  19. Johnson, F. H. (1953) Anat. Rec, 115, 327.Google Scholar
  20. Kaada, B. R., Andersen, P., and Jansen, E. (1954) Neurology, 4, 48.CrossRefGoogle Scholar
  21. Kaada, B. R., Jansen, J., Jr., and Andersen, P. (1953) Neurology, 3, 844.CrossRefGoogle Scholar
  22. Koelliker, A. (1896) “Handbuch der Gewebelehre des Menschen.” 6th edition. Leipzig. Bd. II.Google Scholar
  23. MacLean, P. D. (1952) Electroenceph. clin. Neurophysiol., 4, 407.CrossRefGoogle Scholar
  24. MacLean, P. D. (1954) J. Neurosurg., 11, 29.CrossRefGoogle Scholar
  25. Magnus, O., and Lammers, H. J. (1956) Folia psychiat. neerl., 59, 555.Google Scholar
  26. Magoun, H. W., Ranson, S. W., and Hetherington, A. (1938) Arch. Neurol. Psychiat., Chicago, 39, 1127.CrossRefGoogle Scholar
  27. Moruzzi, G., and Magoun, H. W. (1949) Electroenceph. clin. Neurophysiol., 1, 455.Google Scholar
  28. Nauta, W. J. H. (1946) J. Neurophysiol., 9, 285.Google Scholar
  29. Nauta, W. J. H. (1956) J. comp. Neurol., 104, 247.CrossRefGoogle Scholar
  30. Nauta, W. J. H., and Gygax, P. A. (1954) Stain Technol., 29, 91.Google Scholar
  31. Nauta, W. J. H., and Kuypers, H. G. J. M. (1958). In the press.Google Scholar
  32. Nauta, W. J. H., and Valenstein, E. (1958) Anat. Rec.Google Scholar
  33. Ranson, S. W. (1939) Arch. Neurol. Psychiat., Chicago, 41, 1.CrossRefGoogle Scholar
  34. Ranson, S. W., and Magoun, H. W. (1939) Ergebn. Physiol., 41, 56.CrossRefGoogle Scholar
  35. Sanz Ibáñez, J. (1935) Trab. Lab. Invest. biol. Univ. Madr., 30, 211.Google Scholar
  36. Sheehan, D. (1933) Arb. neurol. Inst. Univ., Wien, 35, 1.Google Scholar
  37. Tello, J. F. (1936) Trab. Lab. Invest. biol. Univ. Madr., 31, 77.Google Scholar
  38. Thomas, D. M., Kaufman, R. P., Sprague, J. M., and Chambers, W. W. (1956) J. Anat., Lond., 90, 371.Google Scholar
  39. Tsai, C. (1925) J. comp. Neurol., 39, 217.CrossRefGoogle Scholar
  40. van Valkenburg, C. T. (1912) “Caudal Connections of the Corpus Mammillare.” Proc. kon. ned. Akad. Wet., 4, 1118.Google Scholar
  41. Vogt, O. (1898) C. R. Soc. Biol., Paris, 50, 206.Google Scholar
  42. Votaw, C. (1957) Anat. Rec., 127, 382.Google Scholar
  43. Wallenberg, A. (1901) Anat. Anz., 20, 175.Google Scholar
  44. Weisschedel, E. (1937) Arch. Psychiat. Nervenkr., 107, 443.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Walle J. H. Nauta
    • 1
  1. 1.Department of NeurophysiologyWalter Reed Army Institute of ResearchUSA

Personalised recommendations