Hypothalamic Regulation of Sleep in Rats. An Experimental Study

  • W. J. H. Nauta
Part of the Contemporary Neuroscientists book series (CN)


The essential role of the nervous system in the regulation of the sleep-waking rhythm of higher animals is now widely recognized. No less a person than von Economo, however, drew attention to the fact that the phenomenon of sleep cannot be accounted for by a mere functional change of the central nervous system from its condition during the waking state. It is indeed an important fact that the function of sleep, instead of being characteristic of higher animals, is also observed in organisms which do not possess a central nervous system, and even in several vegetable species. It is therefore impossible to attribute this mysterious function to any special organ. Since all experimental work on sleep has hitherto been confined to mammals, chiefly to cats and monkeys, practically no data concerning the comparative physiology of this phenomenon are available. Nevertheless, it seems probable that during the phylogenetic development the function of sleep, together with many other mechanisms, was progressively centralized into the nervous system from which organ all changes, characteristic of sleep, were ultimately effected. This centralization proceeded so far that the alternation of wake and sleep seems to be governed in mammals by a circumscribed area of the central nervous system, capable of determining physical and psychical activities. The existence of this “centre” for the regulation of sleep is generally accepted by students of this subject.


Hypothalamic Area Medial Forebrain Bundle Rostral Part Mammillary Body Lateral Hypothalamic Area 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bard, P. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Amer. J. Physiol., 1928, 84: 490–515.Google Scholar
  2. 2.
    Beattie, J. Hypothalamic mechanisms. Canad. med. Ass. J., 1932, 26: 400–405.Google Scholar
  3. 3.
    Beattie, J., Brow, G. R., and Long, C. H. N. Physiological and anatomical evidence for the existence of nerve tracts connecting the hypothalamus with spinal sympathetic centres. Proc. roy. Scc., 1930, B106: 253–275.CrossRefGoogle Scholar
  4. 4.
    Beattie, J. and Sheehan, D. The effects of hypothalamic stimulation on gastric motility. J. Physiol., 1934, 81: 218–227.Google Scholar
  5. 5.
    Bethe, A. Plastizität und Zentrenlehre. In: Handbuch der normalen und pathologischen Physiologie, A. Bethe et al. ed., 1931, 15 (2): 1175–1220.CrossRefGoogle Scholar
  6. 6.
    Bodian, D. Studies on the diencephalon of the Virginia opossum. Part I. The nuclear pattern in the adult. J. comp. Neurol., 1939, 71: 259–323.CrossRefGoogle Scholar
  7. 7.
    Bodian, D. Studies on the diencephalon of the Virginia opossum. Part II. The fiber connections in normal and experimental material. J. comp. Neurol., 1940, 72: 207–297.CrossRefGoogle Scholar
  8. 8.
    Cannon, W. B., Newton, H. F., Bright, E. M., Menkin, V., and Moore, R. M. Some aspects of the physiology of animals surviving complete exclusion of sympathetic nervous impulses. Amer. J. Physiol., 1929, 89: 84–107.Google Scholar
  9. 9.
    Clark, W., E. Le Gros, and Boggon, R. H. On connections of the anterior nucleus of the thalamus. J. Anat., Lond., 1933, 67: 215–226.Google Scholar
  10. 10.
    Crouch, R. L. and Elliott, W. H., Jr. The hypothalamus as a sympathetic centre. Amer. J. Physiol., 1936, 115: 245–248.Google Scholar
  11. 11.
    Ecónomo, C. von.Die Encephalitis lethargica. Wien, Deuticke, 1918.Google Scholar
  12. 12.
    Ecónomo, C. von. Schlaftheorie. Ergebn. Physiol., 1929, 28: 312–339.CrossRefGoogle Scholar
  13. 13.
    Ectors, L. Stimulation of the hypothalamus in chronic hemidecorticated monkeys. Amer. J. Physiol., 1937, 119: 301–302.Google Scholar
  14. 14.
    Ectors, L., Brookens, N. L. and Gerard, R. W. Autonomic and motor localization in the hypothalamus. Arch. Neurol. Psychiat., Chicago, 1938, 39: 789–798.CrossRefGoogle Scholar
  15. 15.
    Fortuyn, Ae., B. Droogleever. Die Ontogenie der Kerne des Zwischenhirns beim Kaninchen. Arch. Anat. Physiol., Lpz., 1912, 303–352.Google Scholar
  16. 16.
    Fulton, J. F., and Ingraham, F. D. Emotional disturbances following experimental lesions of the base of the brain, (prechiasmal). J. Physiol., 1929, 67: xxvii–xxviii.Google Scholar
  17. 17.
    Gamper, E. Bau und Leistungen eines menschlichen Mittelhirnwesens (Arhinen-cephalie mit Encephalocele). Zugleich ein Beitrag zur Teratologie und Faserssytema-tik. Z. ges. Neurol. Psychiat., 1926, 102: 154–235.CrossRefGoogle Scholar
  18. 18.
    Gamper, E. Bau und Leistungen eines menschlichen Mittelhirnwesens (Arhinen-cephalie mit Encephalocele). II. Klinischer Teil. Z. ges. Neurol. Psychiat., 1926, 104: 49–120.CrossRefGoogle Scholar
  19. 19.
    Glees, P. The contribution of the medial fillet and strio-hypothalamic fibres to the dorsal supra-optic decussation. J. Anat., Lond., 1944, 78: 113–117.Google Scholar
  20. 20.
    Goltz, F. Der Hund ohne Groszhirn. Pflüg. Arch. ges. Physiol., 1892, 51: 570–614.CrossRefGoogle Scholar
  21. 21.
    Harrison, F. An attempt to produce sleep by diencephalic stimulation. J. Neuro-physiol., 1940, 3: 156–165.Google Scholar
  22. 22.
    Hess, W. R. Ueber die Wechselbeziehungen zwischen psychischen und vegetativen Funktionen. Schweiz. Arch. Neurol. Psychiat., 1925, 16: 285–306.Google Scholar
  23. 23.
    Hess, W. R. Le sommeil. C. R. Soc. Biol., Paris, 1931, 107: 1333–1360.Google Scholar
  24. 24.
    Hess, W. R. Hypothalamus und die Zentren des autonomen Nervensystems: Physiologie. Arch. Psychiat. Nervenkr., 1936, 104: 548–557.CrossRefGoogle Scholar
  25. 25.
    Hess, W. R. Hypothalamische Adynamic Acta Helv. Physiol. Pharmacol., 1944, 2: 137–147.Google Scholar
  26. 26.
    Hess, W. R. Von dem höheren Zentren des vegetativen Funktionsystems. Bull. Schweiz. Akad. med. Wissensch., 1945, 1: 138–166.Google Scholar
  27. 27.
    Ingram, W. R., Barris, R. W., and Ranson, S. W. Catalepsy: an experimental study. Arch. Neurol. Psychiat, Chicago, 1936, 35: 1175–1197.CrossRefGoogle Scholar
  28. 28.
    Kabat, H., Anson, B. J., Magoun, H. W., and Ranson, S. W. Stimulation of the hypothalamus with special reference to its effect on gastrointestinal motility. Amer. J. Physiol., 1935, 112: 214–226.Google Scholar
  29. 29.
    Karplus, J. P. and Kreidl, A. Gehirn und Sympathicus. II. Ein Sympathicus-zentrum im Zwischenhirn. Pflüg. Arch. ges. Physiol., 1910, 135: 401–416.CrossRefGoogle Scholar
  30. 30.
    Kleitman, N. and Camille, N. Studies on the physiology of sleep. VI. The behaviour of decorticated dogs. Amer. J. Physiol., 1932, 100: 474–480.Google Scholar
  31. 31.
    Magoun, H. W., Ranson, S. W., and Hetherington, A. Descending connections from the hypothalamus. Arch. Neurol. Psychiat., Chicago, 1938, 39: 1127–1149.CrossRefGoogle Scholar
  32. 32.
    Mauthner, L. Zur Pathologie und Physiologie des Schlafes nebst Bemerkungen über die “Nona.” Wien. med. Wschr., 1890, 40: 961, 1001, 1049, 1092, 1144, 1185.Google Scholar
  33. 33.
    Morison, R. S. and Rioch, D. McK. The influence of the forebrain on an autonomic reflex. Amer. J. Physiol., 1937, 120: 257–276.Google Scholar
  34. 34.
    Papez, J. W. The mamillary peduncle Marchi method. Anat. Rec., 1923, 25: 146.Google Scholar
  35. 35.
    Rademaker, G. G. J. Physiologie van den hersenstam. In: Nederlandsch Leerboek der Physiologie, 1944, 5: 234–275.Google Scholar
  36. 36.
    Ranson, S. W. Somnolence caused by hypothalamic lesions in the monkey. Arch. Neurol. Psychiat., Chicago, 1939, 41: 1–23.CrossRefGoogle Scholar
  37. 37.
    Ranson, S. W. and Ingram, W. R. Catalepsy caused by lesions between the mam-millary bodies and third nerve in the cat. Amer. J. Physiol., 1932, 101: 690–696.Google Scholar
  38. 38.
    Ranson, S. W., Kabat, H., and Magoun, H. W. Autonomic responses to electrical stimulation of hypothalamus, preoptic region and septum. Arch. Neurol. Psychiat., Chicago, 1935, 33: 467–477.CrossRefGoogle Scholar
  39. 39.
    Ranson, S. W. and Magoun, H. W. The hypothalamus. Ergebn. Physiol., 1939, 41: 56–163.CrossRefGoogle Scholar
  40. 40.
    Romeis, B.Taschenbuch der mikroskopischen Technik. Munich and Berlin, R. Oldenbourg, 1928.Google Scholar
  41. 41.
    Rothmann, H. Zusammenfassender Bericht über den Rothmannschen grosshirnlosen Hund nach klinischer und anatomischer Untersuchung. Z. ges. Neurol. Psychiat., 1923, 87: 247–313.CrossRefGoogle Scholar
  42. 42.
    Salmon, A. Le sommeil est-il déterminé par l’excitation d’un centre hypnique ou par la dépression fonctionelle d’un centre de la veille? Rev. Neurol., 1932, 1: 714–720.Google Scholar
  43. 43.
    Spiegel, E. A. and Inaba, C. Zur zentralen Lokalisation von Störungen des Wachzustandes. Klin. Wschr., 1926, 2: 2408.CrossRefGoogle Scholar
  44. 44.
    Szymanski, J. S. Die Verteilung der Ruhe- und Aktivitätsperioden bei weissen Ratten und Tanzmäusen. Pflüg. Arch. ges. Physiol., 1918, 171: 324–347.CrossRefGoogle Scholar
  45. 45.
    Tinel, J.Le système nerveux végétatif. Paris, Masson et Cie, 1937.Google Scholar
  46. 46.
    Trömner, E.Das Problem des Schlafes. Wiesbaden, Bergmann, 1912.Google Scholar
  47. 47.
    Winkler, F. Die zerebrale Beeinflussung der Schweisssekretion. Pflüg. Arch. ges. Physiol., 1908, 125: 584–594.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • W. J. H. Nauta
    • 1
  1. 1.Department of AnatomyUniversity of UtrechtHolland

Personalised recommendations