Neuroanatomy pp 598-618 | Cite as

Reciprocal Links of the Corpus striatum with the Cerebral Cortex and Limbic System: A Common Substrate for Movement and Thought?

  • Walle J. K. Nauta
Part of the Contemporary Neuroscientists book series (CN)


Broadly speaking, the cerebral hemisphere of mammals can be said to be composed of three major anatomical and functional realms: the neocortex, the limbic system, and the extrapyramidal system (also referred to as basal ganglia or corpus striatum). Traditionally, and not without good physiological and clinicopathological reason, the neocortex is considered to embody the highest level of sensory analysis and perceptual integration, as well as certain of the more differentiated mechanisms subserving somatic motor function. Last but not least, it is regarded as the staging ground for ideational processes. The limbic system, by contrast, is generally viewed as the main cerebral representative of the internal milieu, expressing its functions, in part at least, in the form of affects and motivation. And finally, the basal ganglia are generally considered to be essential components of the brain’s somatic motor system.


Basal Ganglion Ventral Tegmental Area Limbic System Globus Pallidus Sensorimotor Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bowen, F.P.: Behavioral alterations in patients with basal ganglia lesions; in Yahr, The basal ganglia (Raven Press, New York 1976).Google Scholar
  2. Butcher, L.L.: Acetylcholinesterase histochemistry; in Björklund, Hökfelt, Handbook of chemical neuroanatomy, vol. 1 (Elsevier, Amsterdam 1983).Google Scholar
  3. Carpenter, M.B.; Nakano, K.; Kim, R.: Nigrothalamic projections in the monkey demonstrated by autoradiographic technics. J. comp. Neurol. 165: 401–416 (1976).CrossRefGoogle Scholar
  4. Cole, M.; Nauta, W.J.H.; Mehler, W.R.: The ascending efferent projections of the substantia nigra. Trans. Am. Neurol. Ass. 1964:74–78.Google Scholar
  5. Damasio, A.R.: Language and the basal ganglia; in Evarts, Wise, Bousfield, The motor system in neurobiology (Elsevier Biomedical Press, Amsterdam 1985).Google Scholar
  6. DeLong, M. A.; Georgopoulos, A.P.: Motor functions of the basal ganglia; in Brooks, Motor control, part 2, pp. 1017–1061 (Am. Physiological Society, Bethesda 1981).Google Scholar
  7. Evered, D.; O’Connor, M. (eds): Functions of the basal ganglia. Ciba Fdn Symp., No. 107 (Pitman, London 1984).Google Scholar
  8. Fallon, J.H.; Ribak, C.E.: Multiple neurotransmitter studies in the islands of Calleja complex of the basal forebrain. III. Connections, correlations and reservations. Soc. Neurosci. Abstr. 6:114 (1980).Google Scholar
  9. Fox, C.A.: The stria terminalis, longitudinal association bundle and precommissural fornix fibers in the cat. J. comp. Neurol. 79: 277–295 (1943).CrossRefGoogle Scholar
  10. Fox, C.A.; Andrade, A.N.; Lu Qui, I.J.; Rafols, J.A.: The primate globus pallidus: a Golgi and electron microscopic study. J. Hirnforsch. 15:75–93 (1974).Google Scholar
  11. Graybiel, A.M.: Neurochemically specified subsystems in the basal ganglia; in Evered, O’Connor, Functions of the basal ganglia. Ciba Fdn Symp., No. 107, pp. 114–144 (Pitman, London 1984).Google Scholar
  12. Graybiel, A.M.; Ragsdale, C.W.: Biochemical anatomy of the striatum; in Emson, Chemical neuroanatomy (Raven Press, New York 1983).Google Scholar
  13. Grillner, S.; Shik, M.T.: On descending control of lumbosacral spinal cord from the ‘mesencephalic locumotor region’. Acta physiol. scand. 87: 320–333 (1973).CrossRefGoogle Scholar
  14. Grove, E.A.; Haber, S.N.; Domesick, V.B.; Nauta, W.J.H.: Differential projections from AChE-positive and AChE-negative ventral-pallidum cells in the rat. Soc. Neurosci. Abstr. 9:16 (1983).Google Scholar
  15. Haber, S.N.; Groenewegen, H.J.; Grove, E.A.; Nauta, W.J.H.: Efferent connections of the ventral pallidum: evidence of a dual striato-pallidofugal pathway. J. comp. Neurol. 235: 322–335 (1985).CrossRefGoogle Scholar
  16. Haber, S.N.; Nauta, W.J.H.: Substance P, but not enkephalin, immunoreactivity distinguishes ventral from dorsal pallidum. Soc. Neurosci. Abstr. 7: 916 (1981).Google Scholar
  17. Haber, S.N.; Nauta, W.J.H.: Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry. Neuroscience 9: 245–260 (1983).CrossRefGoogle Scholar
  18. Heimer, L.: The olfactory cortex and the ventral striatum; in Livingston, Hornykiewicz, Limbic mechanisms, the continuing evolution of the limbic system concept (Plenum Press, New York 1978).Google Scholar
  19. Heimer, L.; Wilson, R.D.: The subcortical projections of the allocortex: Similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex; in Santini, Golgi Centennial Symp., pp. 177–193 (Raven Press, New York 1975).Google Scholar
  20. Herkenham, M.: The nigro-thalamo-cortical connection mediated by the nucleus ventralis medialis thalami: evidence for a wide cortical distribution in the rat (Abstract). Anat. Rec. 184:426 (1976).Google Scholar
  21. Hill, J.M.; Switzer, R.C.: The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11: 595–603 (1984).CrossRefGoogle Scholar
  22. Hughlings Jackson, J.: see Taylor (1958).Google Scholar
  23. Kelley, A.E.; Domesick, V.B.; Nauta, W.J.H.: The amygdalostriatal projection in the rat — an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7: 615–630 (1982).CrossRefGoogle Scholar
  24. McKinney, M.; Coyle, J.T.; Hedreen, J.C.: Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system. J. comp. Neurol. 217:103–121 (1983).CrossRefGoogle Scholar
  25. Mesulam, M.-M.; Mufson, E.J.; Wainer, B.H.; Levey, A.I.: Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch 1-Ch 6). Neuroscience 10:1185–1201 (1983).CrossRefGoogle Scholar
  26. Nauta, H.J.W.: Projections of the pallidal complex: an autoradiographic study in the cat. Neuroscience 4:1853–1873 (1979a).CrossRefGoogle Scholar
  27. Nauta, H.J.W.: A proposed conceptual reorganization of the basal ganglia and telencephalon. Neuroscience 4:1875–1881 (1979b).CrossRefGoogle Scholar
  28. Nauta, W.J.H.; Mehler, W.R.: Projections of the lentiform nucleus in the monkey. Brain Res. 1: 3–42 (1966).CrossRefGoogle Scholar
  29. Nauta, W.J. H.; Smith, G.P.; Faull, R.L.M.; Domesick, V.B.: Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3: 385–401 (1978).CrossRefGoogle Scholar
  30. Ribak, C.E.; Fallon, J.H.: The islands of Calleja complex of rat basal forebrain. I. Light and electron microscopic observations. J. comp. Neurol. 205:207–218 (1983).CrossRefGoogle Scholar
  31. Ricardo, J.: Efferent connections of the subthalamic region in the rat. I. The subthalamic nucleus of Luys. Brain Res. 202: 257–271 (1980).CrossRefGoogle Scholar
  32. Saper, C.B.: Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. J. comp. Neurol. 222: 313–342 (1984).CrossRefGoogle Scholar
  33. Scheibel, M.E.; Scheibel, A.B.: The organization of the nucleus reticularis thalami: a Golgi study. Brain Res. 1: 43–62 (1966).CrossRefGoogle Scholar
  34. Sprague, J.M.; Meyer, M.: An experimental study of the fornix in the rabbit. J. Anat. 84: 354–368 (1950).Google Scholar
  35. Swanson, L. W.; Cowan, W.M.: An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J. comp. Neurol. 172:49–84 (1977).CrossRefGoogle Scholar
  36. Swanson, L.W.; Mogenson, G.J.; Gerfen, C.R.; Robinson, P.: Evidence for a projection from the lateral preoptic area and substantia innominata to the ‘mesencephalic locomotor region’ in the rat. Brain Res. 295:161–178 (1984).CrossRefGoogle Scholar
  37. Switzer, R.C.; Hill, J.: Globus pallidus component in the olfactory tubercle: evidence based on iron distribution. Soc. Neurosci. Abstr. 5:79 (1979).Google Scholar
  38. Switzer, R.C.; Hill, J.; Heimer, L.: The globus pallidus and its rostroventral extension into the olfactory tubercle of the rat: a cyto- and chemoarchitectural study. Neuroscience 7: 1891–1904 (1982).CrossRefGoogle Scholar
  39. Taylor, J.: Selected writings of John Hughlings Jackson, vol. I (Basic Books, New York 1958).Google Scholar
  40. Teuber, H.-L.: Complex functions of the basal ganglia; in Yahr, The basal ganglia (Raven Press, New York 1976).Google Scholar
  41. Williams, D.J.; Crossman, A.R.; Slater, P.: The efferent projections of the nucleus accumbens in the rat. Brain Res. 130:217–227 (1977).CrossRefGoogle Scholar
  42. Wilson, R.D.: Efferent connections of the nucleus accumbens in the rat; Master thesis, MIT, Cambridge, Mass. (1972).Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Walle J. K. Nauta
    • 1
  1. 1.Department of Psychology and Brain ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations