Neuroanatomy pp 520-539 | Cite as

A General Profile of the Vertebrate Brain, with Sidelights on the Ancestry of Cerebral Cortex

  • Walle J. H. Nauta
  • Harvey J. Karten
Part of the Contemporary Neuroscientists book series (CN)


The most elementary tenet of the theory of evolution is that animal specification followed a temporal sequence such that one order of species developed from another, and in time gave rise to one or more further orders. The reconstruction of the “tree of evolution,” one of the most constantly pursued goals of biology, is attended by numerous difficulties, foremost among which is the circumstance that existing forms of life represent little more than “leaves on the ends of branches” of a tree, the trunk and limbs of which have long been extinct. Virtually all extant animals appear to be specialized forms that have diverged in greater or lesser degree from any of the identified or presumed mainlines of evolution. The identification of such “mainlines,” furthermore, is often highly uncertain, the more so because several vertebrate classes appear to have evolved not from one, but from several ancestors. Modern amphibians, for example, are suspected of representing several developmental lines originating from various piscine forms.


Motor Neuron Cerebral Hemisphere Inferior Colliculus Reticular Formation Cochlear Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abplanalp, P., 1968. An experimental neuroanatomical study of the visual system in tree shrews and squirrels. Massachusetts Institute of Technology, Cambridge, Massachusetts, doctoral thesis.Google Scholar
  2. Altman, J., and M. B. Carpenter, 1961. Fiber projections of the superior colliculus in the cat. J. Comp. Neurol. 116:157–177.CrossRefGoogle Scholar
  3. Bagley, C., Jr., 1922. Cortical motor mechanism of the sheep brain. Arch. Neurol. Psychiat. 7:417–453.CrossRefGoogle Scholar
  4. Boord, R. L., 1969. The anatomy of the avian auditory system. Ann. N.Y.Acad. Sci. 167:186–198.CrossRefGoogle Scholar
  5. Cowan, W. M., L. Adamson, and T. P. S. Powell, 1961. An experimental study of the avian visual system. J. Anat. 95: 545–563.Google Scholar
  6. Haartsen, A. B., and W.J. C. Verhaart, 1967. Cortical projections to brain stem and spinal cord in the goat by way of the pyramidal tract and the bundle of Bagley. J. Comp. Neurol. 129: 189–201.CrossRefGoogle Scholar
  7. Hall, W. C., and F. F. Ebner, 1969. Thalamotelencephalic projections in a turtle (Pseudemys scripta). Anat. Rec. 163: 193 (abstract).Google Scholar
  8. Herrick, C. J., 1922. Neurological Foundations of Animal Behavior. Henry Holt, New York.Google Scholar
  9. Hodos, W., and H.J. Karten, 1966. Brightness and pattern discrimination deficits in the pigeon after lesions of nucleus rotundus. Exp. Brain Res. 2:151–167.CrossRefGoogle Scholar
  10. Hodos, W., and H.J. Karten. Visual intensity and pattern discrimination deficits after lesions of ectostriatum in pigeons. J. Comp. Neurol., (in press).Google Scholar
  11. Hubel, D. H., and T. N. Wiesel, 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. PhysioI.(London) 160:106–154.Google Scholar
  12. Juorio, A. V., and M. Vogt, 1967. Monoamines and their metabolites in the avian brain. J. Physiol. (London) 189:489–518.Google Scholar
  13. Källén, B., 1962. Embryogenesis of brain nuclei in the chick telencephalon. Ergebn. Anat. Entwickl. 36:62–82.Google Scholar
  14. Karten, H. J., 1967. The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res. 6:409–427.CrossRefGoogle Scholar
  15. Karten, H. J., 1968. The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res. 11:134–153.CrossRefGoogle Scholar
  16. Karten, H. J., 1969. The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann. N.Y.Acad. Sci. 167:164–179.CrossRefGoogle Scholar
  17. Karten, H. J., and W. Hodos. Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia). J. Comp. Neurol. (in press).Google Scholar
  18. Karten, H. J., and W. J. H. Nauta, 1968. Organization of the retinothalamic projections in the pigeon and owl. Anat. Rec. 160:373 (abstract).Google Scholar
  19. Karten, H. J., and A. M. Revzin, 1966. The afferent connections of the nucleus rotundus in the pigeon. Brain Res. 2:368–377.CrossRefGoogle Scholar
  20. Knapp, H., and D. S. Kang, 1968. The retinal projections of the side-necked turtle (Podocnemeis unißlis) with some notes on the possible origin of the pars dorsalis of the lateral geniculate body. Brain, Behav., Evol. 1:369–404.CrossRefGoogle Scholar
  21. Kuhlenbeck, H., 1938. The ontogenetic development and phylogenetic significance of the cortex telencephali in the chick. J. Comp. Neurol. 69: 273–301.CrossRefGoogle Scholar
  22. Morest, D. K., 1965. Identification of homologous neurons in the posterolateral thalamus of cat and Virginia opposum. Anat. Rec. 151:390 (abstract).Google Scholar
  23. Northcutt, R. G., 1969. Discussion of the preceding paper (by H. J. Karten). Ann. N Y. Acad. Sci. 167:180–185.CrossRefGoogle Scholar
  24. Ramón-Moliner, E., and W. J. H. Nauta, 1966. The iso-dendritic core of the brain-stem. J. Comp. Neurol. 126:311–335.CrossRefGoogle Scholar
  25. Revzin, A. M., 1967. Unit responses to visual stimuli in the nucleus rotundus of the pigeon. Fed. Proc. 26:656 (abstract).Google Scholar
  26. Revzin, A. M., 1969. A specific visual projection area in the hyperstriatum of the pigeon (Columba livia). Brain Res. 15: 246–249.CrossRefGoogle Scholar
  27. Revzin, A. M., and H.J. Karten, 1966/67. Rostral projections of the optic tectum and the nucleus rotundus in the pigeon. Brain Res. 3:264–276.CrossRefGoogle Scholar
  28. Rose, M., 1914. Über die cytoarchitektonische Gliederung des Vorderhirns der Vögel J. Psychol. Neurol. 21:278–352.Google Scholar
  29. Schneider, G. E., 1969. Two visual systems: Brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions. Science (Washington) 163: 895–902.CrossRefGoogle Scholar
  30. Schneider, G. E., and W. J. H. Nauta, 1969. Formation of anomalous retinal projections after removal of the optic tectum in the neonate hamster. Anat. Rec. 163:258 (abstract).Google Scholar
  31. Snyder, M., and I. T. Diamond, 1968. The organization and function of the visual cortex in the tree shrew. Brain, Behav., Evol. 1: 244–288.CrossRefGoogle Scholar
  32. Strong, O. S., and A. Elwyn, 1964. Human Anatomy (R. C. Truex and M. B. Carpenter, editors), 5th edition, Williams and Wilkins, Baltimore, p. 8.Google Scholar

Copyright information

© The Rockefeller University Press, New York, N. Y. 1970

Authors and Affiliations

  • Walle J. H. Nauta
    • 1
  • Harvey J. Karten
    • 1
  1. 1.Department of PsychologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations