Neuroanatomy pp 495-509 | Cite as

The Amygdalostriatal Projection in the Rat—An Anatomical Study by Anterograde and Retrograde Tracing Methods

  • A. E. Kelley
  • V. B. Domesick
  • W. J. H. Nauta
Part of the Contemporary Neuroscientists book series (CN)


Tritiated leucine and proline injected into the amygdaloid complex was found to label a voluminous amygdalostriatal fiber system which is distributed to all parts of the striatum except an antero-dorsolateral striatal sector. The connection is established by way of the longitudinal association bundle as well as the stria terminalis, and includes a modest (10–15%), symmetrically distributed contralateral component conveyed by the anterior commissure. Both autoradiographic findings and subsequent observations in retrograde cell-labelling (horseradish peroxidase) material indicate that the amygdalostriatal projection originates mainly from the nucleus basalis lateralis amygdalae, in much lesser volume from the nucleus basalis medialis, and minimally from the nucleus lateralis amygdalae; no other contributing amygdaloid cell group could be identified.

A comparison of the present findings with earlier reports indicates that the amygdalostriatal projection widely overlaps the striatal projections from the ventral tegmental area, the mesencephalic raphe nuclei and the prefrontal cortex. Like the amygdalostriatal projection, these striatal afférents largely or entirely avoid the antero-dorsolateral striatal quadrant, which thus appears to be the striatal region most sparsely innervated by afférents originating from structures within the circuitry of the limbic system. Findings in additional autoradiographic material identify this relatively non-limbic striatal quadrant as the main region of distribution of the corticostriatal projection from the sensorimotor cortex.


Nucleus Accumbens Ventral Tegmental Area Anterior Commissure Stria Terminalis Amygdaloid Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





horseradish peroxidase




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azmitia E. C. & Segal M. (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J. comp. Neurol. 179, 641–668.CrossRefGoogle Scholar
  2. 2.
    Beckstead R. M. (1979) An autoradiographic examination of corticocortical and subcortical projections of the medio-dorsal-projection (prefrontal) cortex in the rat. J. comp. Neurol. 184, 43–62.CrossRefGoogle Scholar
  3. 3.
    Beckstead R. M., Domesick V. B. & Nauta W. J. H. (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res. 175, 191–217.CrossRefGoogle Scholar
  4. 4.
    Dafny N., Dauth G. & Gilman S. (1975) A direct input from amygdaloid complex to caudate nucleus of the rat. Expl Brain Res. 23, 203–210.CrossRefGoogle Scholar
  5. 5.
    De Olmos J. (1972) The amygdaloid projection field in the rat as studied with the cupric-silver method. In The Neurobiology of the Amygdala (ed. Eleftheriou B. E.) pp. 145–204. Plenum Press, New York.CrossRefGoogle Scholar
  6. 6.
    De Olmos J. & Ingram W. R. (1972) The projection field of the stria terminalis in the rat brain. J. comp. Neurol. 146, 303–334.CrossRefGoogle Scholar
  7. 7.
    Divac I. & Oberg R. G. E. (1979) Current conceptions of neostriatal functions. In The Neostriatum (eds Divac I. & Oberg R. G. E.) pp. 215–230. Pergamon Press, Oxford.Google Scholar
  8. 8.
    Domesick V. B. (1981) Similarities and contrasts in the connections of the nucleus accumbens and caudatoputamen. In The Nucleus Accumbens (eds de France J. & Chronister R.). HAER Institute Press, Rockland, Maine.Google Scholar
  9. 9.
    Dunnett S. B. & Iversen S. D. (1980) Regulatory impairments following selective kainic acid lesions of the neostriatum. Behav. Brain Res. 1, 497–506.CrossRefGoogle Scholar
  10. 10.
    Dunnett S. B. & Iversen S. D. (1981) Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behav. Brain Res. 2, 189–209.CrossRefGoogle Scholar
  11. 11.
    Fallon J. H. & Moore R. Y. (1978) Catecholamine innervation of the basal forebrain—IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J. comp. Neurol. 180, 545–580.CrossRefGoogle Scholar
  12. 12.
    Gloor P. (1972) Inputs and outputs of the amygdala: what the amygdala is trying to tell the rest of the brain. In The Neurobiology of the Amygdala (ed. Eleftheriou B. E.) pp. 189–209. Plenum Press, New York.Google Scholar
  13. 13.
    Goddard G. V. (1964) Functions of the amygdala. Psychol. Bull. 62, 89–109.CrossRefGoogle Scholar
  14. 14.
    Graybiel A. M. & Devor M. (1974) A microelectrophoretic delivery technique for use with horseradish peroxidase. Brain Res. 68, 167–173.CrossRefGoogle Scholar
  15. 15.
    Groenewegen H. J., Arnolds D. E. A. T. & Lopes da Silva F. H. (1981) Afferent connections of the nucleus accumbens in the cat, with special emphasis on the projections from the hippocampal region—an anatomical and electrophysiological study. In The Nucleus Accumbens (eds de France J. & Chronister R.). HAER Institute Press, Rockland, Maine.Google Scholar
  16. 16.
    Heimer L. & Wilson R. (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In Golgi Centennial Symposium (ed. Santini M.) pp. 177–193. Raven Press, New York.Google Scholar
  17. 17.
    Jones B. & Mishkin M. (1972) Limbic lesions and the problem of stimulus-reinforcement associations. Expl Neurol. 36, 362–377.CrossRefGoogle Scholar
  18. 18.
    Kelley A. E., Domesick V. B. & Nauta W. J. H. (1981) The amygdalostriatal projection in the rat. Anat. Rec. 199, No. 3, 134–135.Google Scholar
  19. 19.
    Krettek J. E. & Price J. L. (1978a) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J. comp. Neurol. 178, 225–254.CrossRefGoogle Scholar
  20. 20.
    Krettek J. E. & Price J. L. (1978b) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J. comp. Neurol. 178, 255–280.CrossRefGoogle Scholar
  21. 21.
    Künzle H. (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res. 88, 195–209.Google Scholar
  22. 22.
    Leonard C. M. (1969) The prefrontal cortex of the rat—I. Cortical projection of the mediodorsal nucleus—II. Efferent connections. Brain Res. 12, 321–346.CrossRefGoogle Scholar
  23. 23.
    Mesulam M. M. (1978) Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J. Histochem. Cytochem. 26, 106–117.CrossRefGoogle Scholar
  24. 24.
    Moore R. Y., Halaris A. E. & Jones B. E. (1978) Serotonin neurons of the midbrain raphe: ascending projections. J. comp. Neurol. 180, 417–438.CrossRefGoogle Scholar
  25. 25.
    Nauta W. J. H. (1961) Fibre degeneration following lesions of the amygdaloid complex in the monkey. J. Anat., Lond. 95, 515–531.Google Scholar
  26. 26.
    Neill D. B. & Herndon J. G. (1978) Anatomical specificity within rat striatum for the dopaminergic modulation of DRL responding and activity. Brain Res. 153, 529–538.CrossRefGoogle Scholar
  27. 27.
    Newman R. & Winans S. S. (1980) An experimental study of the ventral striatum in the golden hamster—I. Neuronal connections of the nucleus accumbens. J. comp. Neurol. 191, 167–198.CrossRefGoogle Scholar
  28. 28.
    Parent A., Descarries L. & Beaudet A. (1981) Organization of ascending serotonin systems in the adult rat brain. A radioautographic study after intraventricular administration of [3H]5-hydroxytryptamine. Neuroscience 6, 115–138.CrossRefGoogle Scholar
  29. 29.
    Richardson J. S. (1973) The amygdala: historical and functional analysis. Acta Neurobiol. Exp. 33, 623–648.Google Scholar
  30. 30.
    Rosvold H. E. (1972) The frontal lobe system: cortical-subcortical interrelationships. Acta Neurobiol. Exp. 32, 439–460.Google Scholar
  31. 31.
    Royce G. J. (1978) Cells of origin of subcortical afferents to the caudate nucleus: A horseradish peroxidase study in the cat. Brain Res. 153, 465–475.CrossRefGoogle Scholar
  32. 32.
    Steinbusch H. W. M. (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals. Neuroscience 6, 557–618.CrossRefGoogle Scholar
  33. 33.
    Terneaux J. P., Héry F., Bourgoin S., Adrien J., Glowinski J. & Hamon M. (1977) The topographical distribution of serotoninergic terminals in the neostriatum of the rat and the caudate nucleus of the cat. Brain Res. 121, 311–326.CrossRefGoogle Scholar
  34. 34.
    Veening J. G., Cornelissen F. M. & Lieven P. A. J. M. (1980) The topical organization of the afferents to the caudatoputamen of the rat. A horseradish peroxidase study. Neuroscience 5, 1253–1268.CrossRefGoogle Scholar

Copyright information

© IBRO 1982

Authors and Affiliations

  • A. E. Kelley
    • 1
    • 2
  • V. B. Domesick
    • 1
    • 2
  • W. J. H. Nauta
    • 1
    • 2
  1. 1.Laboratories for Psychiatric ResearchMcLean HospitalBelmontUSA
  2. 2.Department of Psychology and Brain ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations