Advertisement

Neuroanatomy pp 277-299 | Cite as

Afferent Connections of the Habenular Nuclei in the Rat. A Horseradish Peroxidase Study, with a Note on the Fiber-of-Passage Problem

  • Miles Herkenham
  • Walle J. H. Nauta
Part of the Contemporary Neuroscientists book series (CN)

Abstract

The afferent connections of the habenular complex in the rat were examined by injecting horseradish peroxidase (HRP) into discrete portions of the habenular nuclei by microelectrophoresis.

  1. 1.

    HRP deposits confined to the lateral half of the lateral habenular nucleus labeled a multitude of cells in the entopeduncular nucleus. Numerous labeled cells also appeared in such cases in the lateral hypothalamus, indicating that the lateral habenular nucleus is a major convergence point of projections from these otherwise apparently quite separate cell regions. Moderate-to-small numbers of labeled cells were also found in the nuclei of the diagonal band, substantia innominata, lateral preoptic area and, more caudally, in the ventral tegmental area, the region of the mesencephalic raphe, and the central gray substance.

     
  2. 2.

    HRP injected into the medial part of the lateral habenular nucleus labeled cells in the same regions, but more in the diagonal band and fewer in the entopeduncular nucleus than were labeled by more lateral injections. The contrast suggests that the projections from the basal forebrain and entopeduncular nucleus to the lateral habenular nucleus are somewhat topographically organized.

     
  3. 3.

    Injections of the medial habenular nucleus labeled an abundance of cells in the posterior parts of the supracommissural septum, but also a small number of cells in the diagonal band and mesencephalic raphe.

     
  4. 4.

    HRP injected into the stria medullaris labeled cells in all of the afore-mentioned areas and, in addition, cells in several olfactory structures, confirming that HRP may be taken up by fibers of passage and label their cells of origin, and suggesting that olfactory structures contribute fibers to the stria medullaris that do not terminate in the habenula.

     

Keywords

Basal Forebrain Lateral Hypothalamus Dorsal Raphe Nucleus Piriform Cortex Medial Forebrain Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ariens Kappers, C. U., G. C. Huber and E. C. Crosby 1960 The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. Hafher, New York. Vol. I, pp. 1101–1103.Google Scholar
  2. Ban, T., and K. Zyo 1962 Experimental studies on the fiber connections of the rhinencephalon. I. Albino rat. Med. J. Osaka Univ., 12: 385–424.Google Scholar
  3. Björklund, A., Ch. Owman and K. A. West 1972 Peripheral sympathetic innervation and serotonin cells in the habenular region of the rat brain. Z. Zellforsch., 127: 570–579.CrossRefGoogle Scholar
  4. Bobillier, P., F. Petitjean, D. Salvert, M. Ligier and S. Seguin 1975 Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography. Brain Res., 85: 205–210.CrossRefGoogle Scholar
  5. Bunt, A. H., A. E. Hendrickson, J. S. Lund, R. D. Lund and A. F. Fuchs 1975 Monkey retinal ganglion cells: morphometric analysis and tracing of axonal projections with a consideration of the peroxidase technique. J. Comp. Neur., 164: 265–286.CrossRefGoogle Scholar
  6. Cajal, S. Ramón y 1911 Histologie du Système Nerveaux de l’Homme et des Vertébrés. Maloine, Paris. Vol. II, pp. 415–426.Google Scholar
  7. Colman, D. R., F. Scalia and E. Cabrales 1976 Light and electron microscopic observations on the anterograde transport of horseradish peroxidase in the optic pathway in the mouse and rat. Brain Res., 102: 156–163.CrossRefGoogle Scholar
  8. Conrad, L. C. A., C. M. Leonard and D. W. Pfaff 1974 Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J. Comp. Neur., 165: 179–206.CrossRefGoogle Scholar
  9. Conrad, L. C. A., and D. W. Pfaff 1976a Autoradiographic tracing of nucleus accumbens efferents in the rat. Brain Res., 113: 589–596.CrossRefGoogle Scholar
  10. Conrad, L. C. A., and D. W. Pfaff 1976b Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J. Comp. Neur., 169: 221–262.CrossRefGoogle Scholar
  11. Cowan, W. M., G. Raisman and T. P. S. Powell 1965 The connexions of the amygdala. J. Neur. Neu-rosurg. Psychiat, 28: 137–151.CrossRefGoogle Scholar
  12. Cragg, B. G. 1961 The connections of the habenula in the rabbit. Exp. Neur., 3: 388–409.CrossRefGoogle Scholar
  13. Crosby, E. C., T. Humphrey and E. W. Lauer 1962 Correlative Anatomy of the Nervous System. Macmillan, New York, pp. 271–273.Google Scholar
  14. DeOlmos, J. S. 1972 The amygdaloid projection field in the rat as studied with the cupricsilver method. In: Neurobiology of the Amygdala. B. E. Eleftheriou, ed. Plenum, New York, pp. 145–204.CrossRefGoogle Scholar
  15. DeOlmos, J. S., and W. R. Ingram 1972 The projection field of the stria terminalis in the rat brain. An experimental study. J. Comp. Neur., 146: 303–334.CrossRefGoogle Scholar
  16. DeVito, J. L., K. W. Clausing and O. A. Smith 1974 Uptake and transport of horseradish peroxidase by cut end of the vagus nerve. Brain Res., 82: 269–271.CrossRefGoogle Scholar
  17. Divac, I. 1975 Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb. Review of some functional correlates. Brain Res., 93: 385–398.CrossRefGoogle Scholar
  18. Domesick, V. B. 1976 Projections of the nucleus of the diagonal band of Broca in the rat. Anat. Rec., 184: 391–392 (Abstract).Google Scholar
  19. Filion, M, C. Harnois and G. Guano 1976 Electrophysiological study of the distribution of axonal branches of individual entopeduncular neurons in the cat. Neurosci. Abstr., 2: 63 (Abstract).Google Scholar
  20. Fox, C. A., A. N. Andrade, I. J. LuQui and J. Rafols 1974 The primate globus pallidus: a Golgi and electron microscopic study. J. fur Hirnfforschung, 15: 75–93.Google Scholar
  21. Furstman, L., S. Saporta and L. Kruger 1975 Retrograde axonal transport of horseradish peroxidase in sensory nerves and ganglion cells of the rat. Brain Res., 84: 320–324.CrossRefGoogle Scholar
  22. Graham, R. C., Jr., and M. J. Karnnovsky 1966 The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem., 14: 291–302.CrossRefGoogle Scholar
  23. Graybiel, A. M., and M. Devor 1974 A microelectro-phoretic delivery technique for use with horseradish peroxidase. Brain Res., 68: 167–173.CrossRefGoogle Scholar
  24. Guillery, R. W. 1957 Degeneration in the hypothalamic connexions of the albino rat. J. Anat. (London), 91: 91–115.Google Scholar
  25. Guillery, R. W. 1959 Afferent fibers to the dorso-medial thalamic nucleus in the cat. J. Ant. (London), 93: 403–419.Google Scholar
  26. Gurdjian, E. S. 1925 Olfactory connections of the albino rat, with special reference to the stria medul-laris and the anterior commissure. J. Comp. Neur., 38: 127–163.CrossRefGoogle Scholar
  27. Halperin, J. J., and J. H. LaVail 1975 A study of the dynamics of retrograde transport and accumulation of horseradish peroxidase in injured neurons. Brain Res., 100: 253–269.CrossRefGoogle Scholar
  28. Hamilton, B. L. 1973 Projections of the nuclei of the periaqueductal gray matter in the cat. J. Comp. Neur., 152: 45–58.CrossRefGoogle Scholar
  29. Heimer, L. 1972 The olfactory connections of the diencephalon in the rat. Brain, Behav. and Evol., 6: 484–523.CrossRefGoogle Scholar
  30. Heimer, L., and R. D. Wilson 1975 The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Golgi Centennial Symposium. Proceedings. M. Santini, ed. Raven, New York, pp. 177–193.Google Scholar
  31. Herrick, C. J. 1948 The Brain of the Tiger Salamander. Univ. Chicago Press, Chicago, pp. 247–264.Google Scholar
  32. Huang, Y. H., and G. J. Mogenson 1972 Neural pathways mediating drinking and feeding in rats. Exp. Neur., 37: 269–286.CrossRefGoogle Scholar
  33. Johnston, J. B. 1923 Further contributions to the study of the evolution of the forebrain. J. Comp. Neur., 35: 337–481.CrossRefGoogle Scholar
  34. Jones, E. G., H. Burton, C. B. Saper and L. W. Swanson 1976 Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J. Comp. Neur., 167: 385–420.CrossRefGoogle Scholar
  35. Jones, E. G., and R. Y. Leavitt 1974 Retrograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J. Comp. Neur., 154: 349–377.CrossRefGoogle Scholar
  36. Kizer, J. S., M. Palkovits and M. J. Brownstein 1976 The projections of the A8, A9 and A10 dopaminergic cell bodies: evidence for a nigral-hy-pothalamic-median eminence dopaminergic pathway. Brain Res., 108: 363–370.CrossRefGoogle Scholar
  37. König, J. F. R., and R. A. Klippel 1963 The Rat Brain. Krieger, Huntington, New York.Google Scholar
  38. Krettek, J. E., and J. L. Price 1974 A direct input from the amygdala to the thalamus and the cerebral cortex. Brain Res., 67: 169–174.CrossRefGoogle Scholar
  39. Kristensson, K., and Y. Olsson 1971 Retrograde axonal transport of protein. Brain Res., 29: 363–365.CrossRefGoogle Scholar
  40. Kristensson, K., and Y. Olsson 1974 Retrograde transport of horseradish peroxidase in transected axons. 1. Time relationships between transport and induction of chromatolysis. Brain Res., 79: 101–109.CrossRefGoogle Scholar
  41. Kuhar, M. J., G. K. Aghajanian and R. H. Roth 1972 Tryptophan hydroxylase activity and synaptosomal uptake of serotonin in discrete brain regions after midbrain raphe lesions: correlations with serotonin levels and histochemical fluorescence. Brain Res., 44: 165–176.CrossRefGoogle Scholar
  42. Kusama, T., and N. Hagino 1961 Medial forebrain bundle and stria medullaris in rabbits. Folia psy-chiat. neurol. jap., 15: 229–245.Google Scholar
  43. Kuypers, H. G. J. M, and V. A. Maisky 1975 Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci. Letters, 1: 9–14.CrossRefGoogle Scholar
  44. Laursen, A. M. 1955 An experimental study of pathways from the basal ganglia. J. Comp. Neur., 102: 1–25.CrossRefGoogle Scholar
  45. LaVail, J. H., and M. M. LaVail 1972 Retrograde axonal transport in the central nervous system. Science, 176: 1416–1418.CrossRefGoogle Scholar
  46. LaVail, J. H., and M. M. LaVail 1974 The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system: a light and electron microscopic study. J. Comp. Neur., 157: 303–358.CrossRefGoogle Scholar
  47. LaVail, J. H., K. R. Winston and A. Tish 1973 A method based on retrograde intraaxonal transport of protein for identification of cell bodies of origin of axons terminating within the CNS. Brain Res., 58: 470–477.CrossRefGoogle Scholar
  48. Leonard, C.M., and J. W. Scott 1971 Origin and distribution of the amygdalofugal pathways in the rat: an experimental neuroanatomical study. J. Comp. Neur., 141: 313–330.CrossRefGoogle Scholar
  49. Marburg, O. 1944 The structure and fiber connections of the human habenula. J. Comp. Neur., 80: 211–234.CrossRefGoogle Scholar
  50. Massopust, L. C., Jr., and R. Thompson 1962 A new interpedunculo-diencephalic pathway in rats and cats. J. Comp. Neur., 118: 97–105.CrossRefGoogle Scholar
  51. Mulhouse, O. E. 1969 S Golgi study of the descending medial forebrain bundle. Brain Res., 15: 341–363.CrossRefGoogle Scholar
  52. Mitchell, R. 1963 Connections of the habenula and of the interpeduncular nucleus in the cat. J. Comp. Neur., 121: 441–457.CrossRefGoogle Scholar
  53. Mizuno, N., C. D. Clémente and E. K. Sauerland 1969 Fiber projections from rostral basal forebrain structures in the cat. Exp. Neur., 25:220–237.CrossRefGoogle Scholar
  54. Mok, A. C. S., and G. J. Mogenson 1974 Effects of electrical stimulation of the lateral hypothalamus, hippocampus, amygdala and olfactory bulb on unit activity of the lateral habenular nucleus in the rat. Brain Res., 77: 417–429.CrossRefGoogle Scholar
  55. Nauta, H. J. W. 1974 Evidence of a pallidohabenu-lar pathway in the cat. J. Comp. Neur., 156: 19–28.CrossRefGoogle Scholar
  56. Nauta, H. J. W., M. B. Pritz and R. J. Lasek 1974 Afférents to the rat caudoputamen studied with horseradish peroxidase. An evaluation of a retrograde neuroanatomical research method. Brain Res., 67: 219–238.CrossRefGoogle Scholar
  57. Nauta, W. J. H. 1956 An experimental study of the fornix system in the rat. J. Comp. Neur., 104: 247–271.CrossRefGoogle Scholar
  58. Nauta, W. J. H. 1958 Hippocampal projections and related neural pathways to the mid-brain in the cat. Brain, 81: 319–341.CrossRefGoogle Scholar
  59. Nauta, W. J. H. and W. Haymaker 1969 Hypothalamic nuclei and fiber connections. In: The Hypothalamus. W. Haymaker, E. Anderson and W. J. H. Nauta, eds. Thomas, Springfield, Ill., pp. 136–209.Google Scholar
  60. Nauta, W. J. H., and H. G. J. M. Kuypers 1958 Some ascending pathways in the brain stem reticular formation. In: Reticular Formation of the Brain. H. H. Jasper, L. D. Proctor, R. S. Knighton, W. G Noshay and R. T. Costello, eds. Little-Brown, Boston, pp. 3–30.Google Scholar
  61. Palkovits, M., and D. M. Jacobowitz 1974 Topographic atlas of catecholamine and acetylcholines-terase-containing neurons in the rat brain. II. Hind-brain (Mesencephalon, rhombencephalon). J. Comp. Neur., 157: 29–42.CrossRefGoogle Scholar
  62. Parent, A. 1976 Striatal afferent connections in the turtle (Chrysemys picta) as revealed by retrograde axonal transport of horseradish peroxidase. Brain Res., 108: 25–36.CrossRefGoogle Scholar
  63. Pierce, E. T., W. W. Foote and J. A. Hobson 1976 The efferent connection of the nucleus raphe dor-salis. Brain Res., 107: 137–144.CrossRefGoogle Scholar
  64. Powell, E. W. 1968 Septohabenular connections in the rat, cat and monkey. J. Comp. Neur., 134: 145–150.CrossRefGoogle Scholar
  65. Powell, E. W. and R. B. Leman 1976 Connections of the nucleus accumbens. Brain Res., 105: 389–403.CrossRefGoogle Scholar
  66. Powell, T. P. S., W. M. Cowan and G. Raisman 1965 The central olfactory connections. J. Anat (London), 99: 791–813.Google Scholar
  67. Price, J. L. and T. P. S. Powell 1970a An experimental study of the origin and the course of the centrifugal fibers to the olfactory bulb in the rat. J. Anat. (London), 107: 215–237.Google Scholar
  68. Price, J. L. and T. P. S. Powell 1970b The afferent connexions of the nucleus of the horizontal limb of the diagonal band. J. Anat. (London), 107: 239–256.Google Scholar
  69. Price, J. L. and T. P. S. Powell 1971 Certain observations on the olfactory pathway. J. Anat. (London), 110: 105–126.Google Scholar
  70. Raisman, G. 1966 The connexions of the septum. Brain, 89: 317–348.CrossRefGoogle Scholar
  71. Raisman, G., W. M. Cowan and T. P. S. Powell 1966 An experimental analysis of the efferent projections of the hippocampus. Brain, 89: 83–108.CrossRefGoogle Scholar
  72. Scalia, F., and D. R. Colman 1974 Aspects of the central projection of the optic nerve in the frog as revealed by anterograde migration of horseradish peroxidase. Brain Res., 79: 496–504.CrossRefGoogle Scholar
  73. Smaha, L. A., and W. W. Kaelber 1973 Efferent fiber projections of the habenula and the interpeduncular nucleus. An experimental study in the opossum and cat. Exp. Brain Res., 16: 291–308.CrossRefGoogle Scholar
  74. Sprague, J. M., and M. Meyer 1950 An experimental study of the fornix in the rabbit. J. Anat. (London), 84: 354–368.Google Scholar
  75. Swanson, L. W. 1976 An autoradiographic study of the efferent connections of the preoptic region in the rat. J. Comp. Neur., 167: 227–256.CrossRefGoogle Scholar
  76. Swanson, L. W., and W. M. Cowan 1975 A note on the connections and development of the nucleus accumbens. Brain Res., 92: 324–330.CrossRefGoogle Scholar
  77. Turner, P. T., and A. B. Harris 1974 Ultrastructure of exogenous peroxidase in cerebral cortex. Brain Res., 74: 305–326.CrossRefGoogle Scholar
  78. Wilson, R. D. 1972 The neural associations of nucleus accumbens septi. Masters thesis, M.I.T., Cambridge, Mass.Google Scholar
  79. Wolf, G., and J. Sutin 1966 Fiber degeneration afterlateral hypothalamic lesions in the rat. J. Comp. Neur., 127: 137–156.CrossRefGoogle Scholar
  80. Zyo, K., T. Ôki and T. Ban 1963 Experimental studies on the medial forebrain bundle, medial longitudinal fasciculus and supraoptic decussations in the rabbit. Med. J. Osaka Univ., 13: 193–239.Google Scholar

Copyright information

© The Wistar Institute Press 1977

Authors and Affiliations

  • Miles Herkenham
    • 1
  • Walle J. H. Nauta
    • 1
  1. 1.Department of PsychologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations