Neuroanatomy pp 238-262 | Cite as

The Isodendritic Core of the Brain Stem

  • E. Ramón-Moliner
  • W. J. H. Nauta
Part of the Contemporary Neuroscientists book series (CN)


According to their degree of morphological specialization, the cell populations of the brain stem may be classified into three groups: isodendritic, allo-dendritic and idiodendritic. The isodendritic neurons, or generalized neurons, are the most frequently encountered. If one discards those isodendritic centers that by common definition are sensory or motor, an isodendritic core is left which displays very little histological variation throughout the whole extent of the brain stem. This core corresponds, with certain restrictions, to the regions that are usually regarded as reticular formation. It constitutes a continuum of overlapping dendritic fields that extends from the spinal cord to the diencephalon. In view of the similarities that exist between the histology of the isodendritic core and the relatively disorganized nervous system of the lower vertebrates, it is postulated that it represents a pool of pluri-potential neurons which in the course of phylogeny have remained relatively undifferentiated and in charge of processing afferent signals of very heterogeneous origin. By contrast, the allodendritic and idiodendritic centers can be regarded as relatively specialized centers from the point of view of their dendritic morphology, connections and functions. Attention is paid to the fact that the diffuse characteristics of the isodendritic core do not necessarily entail ill-defined physiological properties.


Brain Stem Cell Group Reticular Formation Medulla Oblongata Pontine Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, W. F. 1932 Formatio reticularis and reticulospinal tract, their visceral functions and possible relationships to tonicity and tonic contractions. J. Wash. Acad. Scien., 22: 490–495.Google Scholar
  2. Arvanitaki, A. 1942a Effects evoked in an axon by the activity of a contiguous one. J. Neuro-physiol., 5: 89–108.Google Scholar
  3. Arvanitaki, A. 1942b Interactions électriques entre deux cellules nerveuses contiguës. Arch. Int. Physiol., 52: 381–407.CrossRefGoogle Scholar
  4. Bard, P., and D. M. Rioch 1937 A study of four cats deprived of neocortex and additional portions of the forebrain. Bull. Johns Hopks. Hosp., 60: 73–148.Google Scholar
  5. Baxter, D. W., and J. Olszewski 1955 Respiratory responses evoked by electrical stimulation of pons and mesencephalon. J. Neurophysiol., 18: 276–287.Google Scholar
  6. Bishop, G. H. 1956 Natural history of the nerve impulse. Physiol. Rev., 36: 376–399.Google Scholar
  7. Bishop, G. H. 1958a The place of cortex in a reticular system. In: Reticular Formation of the Brain. Ed. by H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, R. T. Costello. Little Brown and Co., Boston. Chapt. XX, 413–421.Google Scholar
  8. Bishop, G. H. 1958b The dendrite: receptive pole of the neuron. E. E. G. Clin. Neurophysiol., suppl. 10: 12–21.Google Scholar
  9. Bodian, D. 1962 The generalized vertebrate neuron. Sci., 137: 323–326.CrossRefGoogle Scholar
  10. Bonvallet, M., A. Hugelin and P. Dell 1955 Sensibilité comparée du système réticulé activa-teur ascendant et du centre respiratoire au gaz du sang et à l’adrénaline. J. Physiol. Paris, 47: 651–654.Google Scholar
  11. Brodai, A. 1957 The Reticular Formation of the Brain Stem. Anatomical Aspects and Functional Correlations. Oliver & Boyd, Edinburgh.Google Scholar
  12. Brodai, A. 1960 Fiber connections of the vestibular nuclei. In: G. L. Rasmussen and W. F. Windle (EDS.), Neural Mechanisms of the Auditory and Vestibular Systems. Charles C Thomas, Springfield, Ill.Google Scholar
  13. Brodai, A., O. Pompeiano and F. Walberg 1962 The vestibular Connections and Functional Correlations. The Henderson Trust Lectures. Oliver and Boyd, Edinburgh.Google Scholar
  14. Brodai, A., and G. Rossi 1955 Ascending fibers in brain stem reticular formation of cat. A.M.A. Arch. Neurol, and Psychiat., 74: 68–87.CrossRefGoogle Scholar
  15. Clare, M. H., and G. H. Bishop 1955 Facilitation and recruitment in dendrites. E.E.G. Clin. Neurophysiol., 7: 486–489.CrossRefGoogle Scholar
  16. Coghill, G. E. 1929 (reprinted 1964) Anatomy and the Problem of Behavior. Hafner, New York and London.Google Scholar
  17. Dell, P. 1958 Humoral effects on the brain stem reticular formation. In: Reticular Formation of the Brain. Ed. by H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, R. T. Costello. Little and Brown, Boston, Chapt. XVIII, 365–378.Google Scholar
  18. French, J. D., F. K. von Amerongen and H. W. Magoun 1952 An activating system in brain stem of monkey. A.M.A. Arch. Neurol. Psychiat., 68: 577–589.CrossRefGoogle Scholar
  19. French, J. D., M. Verzeano and H. W. Magoun 1953 An extralemniscal sensory system in the brain. A.M.A. Arch. Neurol. Psychiat., 69: 505–518.CrossRefGoogle Scholar
  20. Gray, E. G. 1959 Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature, 183: 1592–1593.CrossRefGoogle Scholar
  21. Grundfest, H. 1959 Synaptic and ephaptic transmission. In: Handbook of Physiology, Vol. I. Neurophysiology. Ed. by J. Field, Williams and Wilkins, Baltimore, p. 147–194.Google Scholar
  22. Harris, G. V. 1958 The reticular formation, stress and endocrine activity. In: Reticular Formation of the Brain. Ed. by H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, R. T. Costello. Little and Brown, Boston. Chapt. IX, 207–218.Google Scholar
  23. Herrick, C. Judson 1920 Irreversible differentiation and orthogenesis. Sci., suppl. 51: 621–625.CrossRefGoogle Scholar
  24. Herrick, C. Judson 1948 The brain of the tiger salamander. University of Chicago Press, Chicago, Ill.Google Scholar
  25. Herrick, C. Judson and G. H. Bishop 1958 A comparative survey of the spinal lemniscus systems. In: Reticular Formation of the Brain. Ed. by H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, R. T. Costello. Little and Brown, Boston. Chapt. XVII, 353–359.Google Scholar
  26. Jasper, H. H. 1949 Diffuse projection systems: integration action of the thalamic reticular system. E E. G. and Clin. Neurophysiol., 1: 405–420.Google Scholar
  27. Jasper, H. H. 1954 Functional properties of the thalamic reticular system. In: Brain Mechanisms and Consciousness. Ed. by J. F. Delafresnaye. Blackwell Scient. Pub., Oxford, 374–401.Google Scholar
  28. Jasper, H., and A. M. Monnier 1938 Transmission of excitation between excised non-myeli-nated nerves. An artificial synapse. J. Cell. and Comp. Physiol., 11: 259–277.CrossRefGoogle Scholar
  29. Kuypers, H. G. J. M., A. L. Hoffman and R. M. Beasley 1961 Distribution of cortical ‘feedback’ fibers in the nuclei cuneatus and gracilis. Proc. Soc. Exptl. Biol. Med., 108: 634–637.Google Scholar
  30. Lashley, K. S. 1931 Mass action in cerebral function. Sci., 73: 245–254.CrossRefGoogle Scholar
  31. Leontovich, T. A., and G. P. Zhukova 1963 The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of Carnivora. J. Comp. Neur., 121: 347–381.CrossRefGoogle Scholar
  32. Magoun, H. W. 1952 An ascending reticular activating system in the brain stem. A.M.A. Arch. Neurol. Psychiat., 67: 145–154.CrossRefGoogle Scholar
  33. Magoun, H. W. 1954 The ascending reticular system and wakefulness. In: Brain Mechanisms and Consciousness. Ed. by J. F. Delafresnaye. Blackwell Scient. Pub., Oxford, 1–20.Google Scholar
  34. Mannen, H. 1960 “Noyau fermé” et “noyau ouvert.” Contribution à l’étude cytoarchitec-tonique du tronc cérébral envisagée du point de vue du mode d’arborisation dendritique. Arch. Ital. Biol., 98: 330–350.Google Scholar
  35. Meesen, H., and J. Olszewski 1949 A cyto-architectonic Atlas of the Rhombencephalon of the Rabbit. Karger, Basel and New York.Google Scholar
  36. Morest, K. 1960 A study of the area postrema with Golgi methods. Am. J. Anat., 107: 291–303.CrossRefGoogle Scholar
  37. Morest, K., and J. Sutin 1961 Ascending pathways from an osmotically sensitive region of the medulla oblongata. Exper. Neurol., 4: 413–423.CrossRefGoogle Scholar
  38. Morison, R. S., and E. W. Dempsey 1942 A study of the thalamo-cortical relations. Amer. J. Physiol., 135: 281–292.Google Scholar
  39. Moruzzi, G. 1954 The physiological properties of the brain stem reticular formation. In: Brain Mechanisms and Consciousness. Ed. J. F. Delafresnaye. Blackwell Scient. Publ. Oxford, 21–53.Google Scholar
  40. Moruzzi, G., and H. W. Magoun 1949 Brain stem reticular formation and activation of the EEG. EEG. and Clin. Neurophysiol., 1: 455–473.Google Scholar
  41. Nauta, W. J. H. 1963 Central nervous organization and endocrine motor systems: In: Advances in Neuroendocrinology. Ed. by A. V. Nalbandov. University of Illinois Press, Urbana, 5–20.Google Scholar
  42. Nauta, W. J. H., and H. G. J. M. Kuypers 1958 Some ascending pathways in the brainstem reticular formation. In: Reticular Formation of the Brain. Ed. by H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, R. T. Costello. Little and Brown, Boston, Chapt. I, 3–28.Google Scholar
  43. Nauta, W. J. H., and W. R. Mehler 1966 Projections of the lentiform nucleus in the monkey. Brain Research, 1: 3–42.CrossRefGoogle Scholar
  44. Nauta, W. J. H., and D. G. Whitlock 1954 Anatomical analysis of the non-specific thalamic projection system. In: Brain Mechanisms and Consciousness. Ed. by J. F. Delafresnaye. Blackwell Scient. Pub., Oxford, 81–104.Google Scholar
  45. Olszewski, J., and D. Baxter 1954 Cytoarchi-tecture of the human brain stem. S. Karger, New York and Basel.Google Scholar
  46. Pitts, R. F., H. W. Magoun and S. W. Ranson 1939 Localization of the medullary respiratory centers in the cat. Am. J. Physiol., 126: 673–689.Google Scholar
  47. Rail, W. 1959 Branching dendritic trees and motoneuron membrane resistivity. Exper. Neurol., 1: 491–527.CrossRefGoogle Scholar
  48. Rail, W. 1960 Membrane potential transients and membrane time constant of motoneurons. Exper. Neurol., 2; 503–532.CrossRefGoogle Scholar
  49. Rail, W. 1961 Theory of physiological properties of dendrites. Ann. N. Y. Acad. Sci., 96: 1071–1092.CrossRefGoogle Scholar
  50. Rail, W. 1962 Electrophysiology of a dendritic neuron model. Biophys. Journ. 2; suppl.: 145–167.CrossRefGoogle Scholar
  51. Ramon y Cajal, S. 1909a Histologie du Système Nerveux de l’homme et des vertébrés. Volumes I and II. Maloine, Paris, Reprinted: Consejo Superior de Investigaciones Cientificas, 1952, Madrid.Google Scholar
  52. Ramon y Cajal, 1909b Contribucion al estudio de los ganglios de la substancia reticular del bulbo. Trab. Lab. Invest. Biol., Madrid., 7; 259–284.Google Scholar
  53. Ramön-Moliner, E. 1958 A tungstate modification of the Golgi-Cox method. Stain Technol., 33: 19–29.Google Scholar
  54. Ramön-Moliner, E. 1962a An attempt at classifying nerve cells on the basis of their dendritic patterns. J. Comp. Neur., 119: 211–227.CrossRefGoogle Scholar
  55. Ramön-Moliner, E. 1962b The distribution of non-specific dendritic patterns in the brain stem (abstract). Anat. Rec, 142: 270.Google Scholar
  56. Ramön-Moliner, E. 1963 Dendritic patterns of the cat’s brain stem. (Demonstration at the 76th Amer. Meet, of Anatomists). Anat. Rec, 145: 366.Google Scholar
  57. Ramón-Moliner, E., M. Vane and G. V. Fletcher 1964 Basic dye counterstaining of sections impregnated by the Golgi-Cox method. Stain Technol., 39: 65–70.Google Scholar
  58. Scheibel, M. D., and A. B. Scheibel 1958 Structural substrates for integrative patterns in the brain stem reticular core. In: Reticular Formation of the Brain. Ed. by H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, R. T. Costello. Little and Brown, Boston, Chap. II, 31–53.Google Scholar
  59. Scheibel, M. E., A. B. Scheibel, A. Mollica and G. Moruzzi 1955 Convergence and interaction of afferent impulses on single units of the reticular formation. J. Neurophysiol., 18: 309–331.Google Scholar
  60. Sholl, D. A. 1953 Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. Lond., 87: 387–406.CrossRefGoogle Scholar
  61. Starzl, T. E., and H. W. Magoun 1951 Organization of the diffuse thalamic projection system. J. Neurophysiol., 14: 133–146.Google Scholar
  62. Starzl, T. E., C. W. Taylor and H. W. Magoun 1951a Ascending conduction in the reticulaï activating system with special reference to the diencephalon. J. Neurophysiol., 14: 461–477.Google Scholar
  63. Starzl, T. E., C. W. Taylor and H. W. Magoun 1951b Collateral afferent excitation of the reticular formation of the brain stem. J. Neurophysiol., 14: 479–496.Google Scholar
  64. Starzl, T. E., and D. G. Whitlock 1952 Diffuse thalamic projection system in the monkey. J. Neurophysiol., 15: 449–468.Google Scholar
  65. Szentágothai, J., B. Flerko, B. Mess and B. Halasz 1962 Hypothalamic control of the Anterior Pituitary. Akademi Kiado, Budapest.Google Scholar
  66. Taber, E. 1961 The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei. J. Comp. Neur., 116: 27–69.CrossRefGoogle Scholar
  67. Tang, P. C. 1955 Levels of brain stem and diencephalon controlling micturition reflex. J. Neurophysiol., 18: 583–595.Google Scholar
  68. Valverde, F. 1961 Reticular formation of the pons and medulla oblongata. A Golgi study. J. Comp. Neur., 116: 71–100.CrossRefGoogle Scholar
  69. Van der Loos, H. 1956 Une combinaison de deux vieilles méthodes histologiques pour le système nerveux central. Monatschr. f. Psy-chiat. u. Neurol., 132: 330–334.CrossRefGoogle Scholar
  70. Weiss, P. 1960 Modifiahlity of the neuron. A.M.A. Arch. Neurol., 2; 595–599.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • E. Ramón-Moliner
    • 1
    • 2
  • W. J. H. Nauta
    • 1
    • 2
  1. 1.École de MédecineUniversité LavalQuébecCanada
  2. 2.Department of PsychologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations