Advertisement

Neuroanatomy pp 202-219 | Cite as

Fibre Degeneration Following Lesions of the Amygdaloid Complex in the Monkey

  • W. J. H. Nauta
Part of the Contemporary Neuroscientists book series (CN)

Abstract

Of the amygdaloid projection pathways the stria terminalis has traditionally received strong emphasis in anatomical studies, and less attention has customarily been given other fibre systems originating in the amygdaloid complex. It is, however, known that the amygdala is connected with other basal telencephalic structures and with the diencephalon by a massive ventral fibre system which spreads forward and medially through the region underneath the lentiform nucleus. This fibre system appears to have been recognized first by Johnston (1923), who considered it to be an amygdalofugal component of his ‘longitudinal association bundle’. Johnston limited his account of this projection system to the statement that such fibres beneath the globus pallidus join ‘the general system of precommissural fibres passing up through the parolfactory area’. Later workers, on the basis of experimental-anatomical observations in the cat, described distributions of the ventral amygdalofugal fibre system to the preoptic region and hypothalamus (Lammers & Lohman, 1957; Hall, 1960), the bed nucleus of the stria terminalis (Fox, 1943), the caudate nucleus and the subcallosal gyrus (Lammers & Lohman, 1957).

Keywords

Medial Forebrain Bundle Uncinate Fasciculus Stria Terminalis Inferior Temporal Gyrus Olfactory Tubercle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Key to Abbreviations Used in Figures

AC

anterior commissure

ADH

area dorsalis hypothalami

AH

nucleus anterior hypothalami

AL

ansa lenticularis

AM

nucleus anterior medialis thalami

A.Ped.

ansa peduncularis

AV

nucleus anterior ventralis thalami

B

basal amygdaloid nucleus

CI

capsula interns

Cl

claustrum

DMH

nucleus dorsomedialis hypothalami

CO

cortical amygdaloid nucleus

DMm

nucleus dorsomedialis thalami, pars medialis

F

fornix

FU

fasciculus uncinatus

GP

globus pallidus

GR

gyrus rectus

Hp

hippocampus

L

lateral amygdaloid nucleus

LH

nucleus lateralis hypothalami

LP

nucleus preopticus lateralis

MP

nucleus preopticus medialis

NAP

nucleus ansae peduncularis

NC

nucleus caudatus

ND

nucleus of the diagonal band of Broca

NST

nucleus striae terminalis

NSt

nucleus subthalamicus

Pp

cortex prepiriformis

Put

putamen

SO

nucleus supraopticus

SOD

nucleus supraopticus diffuses

ST

stria terminalis

TO

tractus opticus

T.0l.

tuberculum olfactorium

V

lateral ventricle

VA

nucleus ventralis anterior thalami

VL

nucleus ventralis lateralis thalami

VMH

nucleus ventromedialis hypothalami

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey, W. R. & Meyer, M. (1952). Hippocampal and hypothalamic connexions of the temporal lobe in the monkey. Brain, 75, 358–383.CrossRefGoogle Scholar
  2. Ariens Kappers, C. U., Huber, G. C. & Crosby, E. C. (1936). The Comparative Anatomy of the Nervous System of Vertebrates, including Man, vol. II. New York: MacMillan.Google Scholar
  3. Ban, T. & Omukai, F. (1959). Experimental studies on the fiber connections of the amygdaloid nuclei in the rabbit. J. comp. Neurol. 113, 245–279.CrossRefGoogle Scholar
  4. Berkelbach v. d. Sprenkel, H. (1926). Stria terminalis and amygdala in the brain of the opossum (Didelphys virginiana). J. comp. Neurol. 42, 211–254.CrossRefGoogle Scholar
  5. Bowsher, D., Brodal, A. & Walberg, F. (1960). The relative values of the Marchi method and some silver impregnation techniques. A critical survey. Brain, 83, 150–160.CrossRefGoogle Scholar
  6. Cragg, B. G. & Hamlyn, L. H. (1957). Some commissural and septal connexions of the hippocampus in the rabbit. A combined histological and electrical study. J. Physiol. 135, 460–485.Google Scholar
  7. Daitz, H. M. & Powell, T. P. S. (1954). Studies of the connexions of the fornix system. J. Neurol. 17, 75–82.Google Scholar
  8. Fox, C. A. (1943). The stria terminalis, longitudinal association bundle and precommissural fornix fibers in the cat. J. comp. Neurol. 79, 277–295.CrossRefGoogle Scholar
  9. Fox, C. A. (1949). Amygdalo-thalamic connections in Macaca mulatto. Anat. Rec. 103, no. 2, 537–538 (abstract).Google Scholar
  10. Gloor, P. (1955). Electrophysiological studies on the connections of the amygdaloid nucleus in the cat. Part I. The neuronal organization of the amygdaloid projection system. Electroenceph. clin. Neurophysiol. 7, 223–242.CrossRefGoogle Scholar
  11. Gloor, P. (1959). Amygdala. In Handbook of Physiology, Section I: Neurophysiology, chapter lvii. Baltimore: Williams and Wilkins.Google Scholar
  12. Guillery, R. W. (1959). Afferent fibres to the dorsomedial thalamic nucleus in the cat. J. Anat.Lond., 93, 403–419.Google Scholar
  13. Hall, E. (1960). Efferent pathways of the lateral and basal nuclei of the amygdala in the cat. Anat. Rec. 136, no. 2, 205 (abstract).Google Scholar
  14. Hilpert, P. (1928). Der Mandelkern des Menschen. I. Cytoarchitektonik und Faserverbindungen. J. Psychol. Neurol., Lpz., 36, 44–73.Google Scholar
  15. Humphrey, T. (1936). The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertinent fibre connections. J. comp. Neurol. 65, 603–711.CrossRefGoogle Scholar
  16. Johnston, J. B. (1923). Further contributions to the study of the evolution of the forebrain. J. comp. Neurol. 35, 337–481.CrossRefGoogle Scholar
  17. Lammers, H. J. & Lohman, A. H. M. (1957). Experimenteel anatomisch onderzoek naar de verbindingen van piriforme cortex en amygdalakernen bij de kat. Ned. Tijdschr. Geneesk. 101,1–2.Google Scholar
  18. Nauta, W. J. H. (1958). Hippocampal projections and related neural pathways to the mid-brain in the cat. Brain, 81, 319–340.CrossRefGoogle Scholar
  19. Nauta, W. J. H. & Valenstein, E. S. (1958). Some projections of the amygdaloid complex in the monkey. Anat. Rec. 130, no. 2, 346 (abstract).Google Scholar
  20. Pribram, K. H., Chow, K. L. & Semmes, J. (1948). Limit and organization of the cortical projection from the medial thalamic nucleus in monkey. J. comp. Neurol. 98, 433–448.CrossRefGoogle Scholar
  21. Pribram, K. H. & MacLean, P. D. (1952). Neuronographic analysis of medial and basal cerebral cortex. II. Monkey. J. Neurophysiol. 16, 324–340.Google Scholar
  22. Rioch, D. McK., Wislocki, G. B. & O’Leary, J. L. (1940). A precis of preoptic, hypothalamic and hypophysial terminology with atlas. Bes. Publ. Ass. nerv. ment. Dis. 20, 3–30.Google Scholar
  23. Scoville, W. B. & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. J. Neurol. 20, 11–21.Google Scholar
  24. Valenstein, E. S. & Nauta, W. J. H. (1959). A comparison of the distribution of the fornix system in the rat, guinea pig, cat, and monkey. J. comp. Neurol. 113, 337–363.CrossRefGoogle Scholar
  25. Whitlock, D. B. & Nauta, W. J. H. (1956). Subcortical projections from the temporal neocortex in Macaca mulatta. J. comp. Neurol. 106, 183–212.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • W. J. H. Nauta
    • 1
  1. 1.Department of NeurophysiologyWalter Reed Army Institute of ResearchUSA

Personalised recommendations