Advertisement

Physical Properties of Membrane Lipids Isolated from a Thermophilic Eubacterium (Thermus sp.)

  • A. Prado
  • M. S. da Costa
  • J. Laynez
  • V. M. C. Madeira
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Summary

Membranes from a thermophilic eubacterium, Thermus sp. strain SPS 11, isolated from thermal springs of Sao Pedro do Sul spa (Portugal), are characterized for having two main polar lipids, a glycolipid (GL) with four monosaccharide residues, which at 73°C accounts for 95% of the carbohydrate in the total lipid extracts, and a glycophospholipid (PL) which at 73°C accounts for about 90% of the lipid phosphorous. A complex mixture of carotenoids (CA) makes up 11% by weight of the total membrane lipids. The branched fatty acyl chains (iso C15 and iso C17) comprise about 90% of the alifatic moieties of the polar lipids of this bacterium. Moreover, when the growth temperature increases from 50 to 73°C there is an increase of the iso C17/iso C15 ratio and of the GL/PL ratio. We have studied the biophysical properties of bilayers (as multilamellar liposomes) prepared from GL, PL and the mixtures of PL, GL and CA in proportions found in the membranes of bacteria growing at their optimal growth temperature, using polarization of DPH fluorescence, low and wide-angle X-ray diffraction and differential scanning calorimetry. The three techniques agree in showing the presence of a broad phase transition from a gel (Lß) phase to a liquid-crystal (L∝) phase between 8 and 30°C, for all the lipid dispersions studied except for the GL. Although all the dispersions studied form a bilayer structure at all the temperatures studied, only the mixture of the three components (PL, GL + CA) avoids the phase separation present in the mixtures of PL +CA at temperatures lower than 30°C and PL + GL at temperatures lower than 55°C. Our results are compared with those of Pinheiro et al. (1978) obtained with the 31P-NMR technique and applied to the study of the same samples.

Keywords

Fluorescence Polarization Interlamellar Spacing Multilamellar Liposome Lipid Dispersion Thermotropic Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azzi, A., 1974, “The use of fluorescent probes for the study of membranes”. Methods in Enzymolggy, vol. 32, pp 234. Fleischer, S. and Packer, L. ed. Academic Press. London.CrossRefGoogle Scholar
  2. Bartlett, G.R., 1959, Phosphorous assay in column chromatography. J. Bio1. Chem. 234: 466–468.Google Scholar
  3. Bisseret, P., Wolff, G., Albrecht, A-M., Tanaka, T., Nakatani, Y. and Ourisson, G., 1983, A direct study of the cohesion of lecithin bilayers: The effect of hopanoids and ∝, ∞-dihydroxycarotenoids. Biochem. Biophys. Res. Comm. 110: 320–324.PubMedCrossRefGoogle Scholar
  4. Bligh, E.G. and Dyer, W. J., 1959, A rapid method of total lipid extraction and purification. Can. J. Biochem. physiol. 37: 911–917.PubMedCrossRefGoogle Scholar
  5. Bottcher, G. J. F., Van Gent, C.M. and Pries, C., 1961, A rapid and sensitive submicro phosphorous determination. Anal. Chem. 28: 350–356.Google Scholar
  6. Brock, T. D. and Freeze, H., 1969, Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol. 104: 509–517.Google Scholar
  7. Brock, T. D., 1978, Thermophilic microorganisms and life at high temperatures. Edited by Starr, M.P., Springer-Verlag, Berlin.CrossRefGoogle Scholar
  8. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F., 1956, Colorimetric method for determination of sugars and related substances. Anal. Chimica Acta 24: 203 – 204.Google Scholar
  9. Estep, T. N., Mountcastle, D. B., Biltonen, R. L. and Thompson, T.E., 1978, Studies on the anomalous thermotropic behaviour of aqueous dispersions of dipalmitoyl-phosphatidylcholine-cholesterol mixtures. Biochemistry 17: 1984–1989.PubMedCrossRefGoogle Scholar
  10. Haest, C. W. M., Verkleij, A. J., de Gier, J., Scheek, R., Ververgaert, P.H.J. and van Deenen, L. L. M., 1974, The effect of lipid transition on the architecture of bacterial membranes. Biochim. Biophys. Acta 356: 17–26.PubMedCrossRefGoogle Scholar
  11. Hinz, H-J., Ruess, K.P. and Liefländer, M., 1985, Head-group contributions to bilayer stability: Monolayer and calorimetric studies on synthetic, stereochemically uniform glucolipids. Biochemistry 24: 806–813.PubMedCrossRefGoogle Scholar
  12. Hudson, A. J., Morgan, H. W. and Daniels, R. M., 1986, A numerical classification of some Thermus isolates. J. Gen. Microbiol. 132: 531 – 540.Google Scholar
  13. Iwamoto, K., Sunamoto, J., Inowe, K., Endo, T. and Nojima, S., 1982, Liposomal membranes. XV. Importance of surface structure in liposomal membranes of glycero-glycolipids. Biochim. Biophys. Acta 691:44–51.CrossRefGoogle Scholar
  14. Kannenberg, E., Blume, A., McElhaney, R. and Poralla, K., 1983, Monolayer and calorimetric studies of phosphatidylcholine containing branched-chain fatty acids and their interactions with cholesterol and with bacterial hopanoids in model membranes. Biochim. Biophys. Acta 733: 111–116.CrossRefGoogle Scholar
  15. Lazrak, T., Milon, A., Wolf, G., Albrecht, A-M., Mielè, M., Ourisson, G. and Nakatani, Y., 1987, Comparison of the effects of inserted C40 and C50-terminally dihydroxylated carotenoids on the mechanical properties of various phospholipid vesicles. Biochim. Biophys. Acta 903: 132–141.PubMedCrossRefGoogle Scholar
  16. Legendre, S., Letellier, L. and Shechter, 1980, Influence of lipids with branched-chain fatty acids on the physical, morphological and functional properties of Escherichia coli cyttoplasmic membrane. Bichim. Biophys. Acta 602:491–505.CrossRefGoogle Scholar
  17. Mabrey, S., Mateo, P. L. and Sturtevant, J. M., 1978, High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoyl-phosphatidylcholines. Biochemistry 17:2464–2468.PubMedCrossRefGoogle Scholar
  18. Melchior, D.L., 1982, Lipid phase transition and regulation of membrane fluidity in Prokaryotes in: “Current topics in membrane and transport”. pp 263–316. Edited by S. Razin & S. Rottem. vol 17, Academic Press. LondonGoogle Scholar
  19. Milon, A., Lazrak, T., Albrecht, A-M., Wolff, G., Well, G., Ourisson, G. and Nakatani, Y., 1986, Osmotic swelling of unilamellar vesicles by stopped-flow light scattering method. Influence of vesicle size, solute, temperature, cholesterol and three ∝, ∞- dihydroxycarotenoids. Biochim. Biophys. Acta 859: 1–9.CrossRefGoogle Scholar
  20. Oshima, M. and Imahori, K., 1974, Description of Thermus thermophilus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol. 104: 509–517.Google Scholar
  21. Oshima, M., 1978, Structure and function of membrane lipids in thermophilic bacteria. in: “Biochemistry of thermophily”, pp 1–10. Edited by S. M. Friedman, Academic Press, New York.Google Scholar
  22. Pask-Hughes, R. A., Mozaffary, H. and Shaw, N., 1977, Glycolipids in prokaryotic cells. Biochem. Soc. Trans. 5: 1675–1677.PubMedGoogle Scholar
  23. Pask-Hughes, R. A. and Williams, R. A. D., 1977, Yellow pigmented strain of Thermus spp. from Icelandic hot springs. J. Gen. Microbiol. 102:375–383.Google Scholar
  24. Pinheiro, T. J. T., Vaz, W.L.C., Geraldes, C. F. G. C., Prado, A. and S. da Costa, M., 1987, A 3lP-NMR study on multilamellar liposomes formed from the lipids of a thermophilic bacterium. Biochem. Biophys. Res. Comm. 148: 397–402.Google Scholar
  25. Prado, A., S. da Costa, M. and Madeira, V.M. C., 1988, Effect of growth temperature on the lipid composition of two Thermus sp strain. J. Gen. Microbiol. in press.Google Scholar
  26. Ranck, J. L., Mateu, L., Sadler, D.M., Tardiue, A., Gulik-Krzywicki, T. and Luzzati, V., 1974, Order-disorder conformational transitions of the hydrocarbon chains of lipids J. Mol. Biol. 85: 249–277.PubMedCrossRefGoogle Scholar
  27. Ray, P. H., White, D. C., Brock, T. D., 1971, Effect of the growth temperature on the lipid composition of Thermus aquaticus J. Bactertol. 108: 221–235.Google Scholar
  28. Sen, A., Williams, P. and Quinn, P. J., 1981, The structure and thermotropic properties of pure 1, 2-diacylgalactosyl-glycerols in aqueous systems. Biochim. Biophys. Acta 663: 380–389.PubMedGoogle Scholar
  29. Sharom, F. C., Barrat, D. G., Thede, A. E. and Grant, C. W. M., 1976, Glycolipids in model membranes spin label and freeze-etch studies. Biochim. Biophys. Acta 455: 485–492.PubMedCrossRefGoogle Scholar
  30. Shipley, G.G., Green, J. P. and Nichols, B. M., 1973, The phase behaviour of monogalactosyl, digalactosyl and sulphoquinovosyl diglycerides. Biochim. Biophys. Acta 311: 531–544.PubMedCrossRefGoogle Scholar
  31. Stumpel, J., Eibl, H. and Nieksch, A., 1983, X-ray analysis and calorimetry on phosphatidylcholine model membranes. The influence of length and position of acyl chains upon structure and phase behaviour. Biochem. Biophys. Acta 727: 246–254.PubMedCrossRefGoogle Scholar
  32. Stumpel, J., Vaz, W.L.C. and Hallmann, D., 1985, An X-ray diffraction and differential scanning calorimetric study on the effect of sucrose on the properties of phosphatidylcholine bilayers. Biochem. Biophys. Acta 821: 165–168.PubMedCrossRefGoogle Scholar
  33. Wieslander, A., Christiansson, A., Rilfors, L. and Lindblom, G., 1980, Lipid bilayer stability in membranes. Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape Biochemistry 19: 3650–3655.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • A. Prado
    • 1
  • M. S. da Costa
    • 2
  • J. Laynez
    • 3
  • V. M. C. Madeira
    • 2
  1. 1.Departamento de Bioquímica, Facultad de CienciasUniversidad del País vascoSpain
  2. 2.Departamento de ZoologiaUniversidade de CoimbraPortugal
  3. 3.Instituto de Química-Física “Rocasolano”MadridSpain

Personalised recommendations