Technological Development of Lipid Based Tubule Microstructures

  • Alan S. Rudolph
  • Jeffrey M. Calvert
  • Paul E. Schoen
  • Joel M. Schnur
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


In 1984 a novel microstructure called a “tubule” was discovered by Yager and Schoen1. This paper will review the work that has been performed during the last four years on the study of the mechanism of formation of tubules, the characterization of tubules, and the assessment of their potential for application.


Tubule Formation Acyl Chain Electroless Nickel Multilamellar Vesicle Electroless Copper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Yager and P. Schoen, Formation of Tubules by a Polymerizable Surfactant,Google Scholar
  2. Mol. Crvst. Liq. Crvst. 106:371–381 (1984).Google Scholar
  3. 2.
    J.H. Fendler, in: “Membrane Mimetic Chemistry,” J. Wiley & Sons, New York (1982).Google Scholar
  4. 3.
    B. Hupfer, H. Ringsdorf, and H. Schup, Liposomes From Polymerizable Phospholipids, Chem. Phys. Lipids 33:355–374 (1983).PubMedCrossRefGoogle Scholar
  5. 4.
    B. Tieke and D. Bloor, Raman Spectroscopic Studies of the Solid-State Polymerization of Diacetylenes, 3. UV-Polymerization of Diacetylene Langmuir-Blodgett Multilayers, Makromol. Chem. 180:2275 (1979).CrossRefGoogle Scholar
  6. 5.
    D. Day and H. Ringsdorf, Polymerization of Diacetyleninc COOH Monolayers at Gas-Water Interface, J. Polym. Sci. Polym. Lett. Edn. 16:205 (1978).Google Scholar
  7. 6.
    S. L. Regen, A. Singh, G. Oehme, and M. Singh, Polymerized Phosphatidylcholine Vesicles, Synthesis and Characterization, J. Am. Chem. Soc. 104:791 (1982).CrossRefGoogle Scholar
  8. 7.
    D.S. Johnston, L.R. Mclean, M.A. Whitam, A.D. Clark, and D. Chapman, Spectra and Physical Properties of Liposomes and Monolayers of Polymerizable Phospholipids Containing Diacetylene Groups in One or Both Acyl Chains, Biochem. 22:3194–3202 (1983)CrossRefGoogle Scholar
  9. 8.
    D.F. O’Brien, T.H. Whitesides, and R.T. Klingbiel, The Photopolymerization of Lipid Diacetylenes in Biomolecular Layer Membranes, J. Polym. Sci: Polym. Lett. Edn. 19:95–101 (1981).Google Scholar
  10. 9.
    J.M. Schnur, R. Price, P. Schoen, P. Yager, J.M. Calvert, J. Georger, and A. Singh, Lipid Based Tubule Microstructures, Thin Solid Films 152:181–206 (1987).CrossRefGoogle Scholar
  11. 10.
    N. Nakashima, S. Asakuma, and T. Kunitake, Optical Microscopy Study of Helical Superstructures of Chiral Bilayer Membranes, J. Amer. Chem. Soc. 107:509 (1985).CrossRefGoogle Scholar
  12. 11.
    K. Dorn, R.T. Klinbiel, D.P. Specht, P.N. Tyminski, H. Ringsdorf, and D.F. O’Brien, Permeability Characteristics of Polymeric Bilayer Membranes From Methacryloyl and Butadiene Lipids. J. Am. Chem. Soc. 106:1627–1633 (1984).CrossRefGoogle Scholar
  13. 12.
    A. Singh, R. Price, J.M. Schnur, P.E. Schoen, and P. Yager, Tubule Formation by Heterobifunctional Polymerizable Lipids: Synthesis and Characterization, Polym. Prepr. 27:393–394 (1986).Google Scholar
  14. 13.
    A. Singh and J.M. Schnur, A General Method for the Synthesis of Diacetylenic Acids, Synth. Comm. 16:847–852 (1986).CrossRefGoogle Scholar
  15. 14.
    A. Singh, B. Singh, B.P. Gaber, R. Price, T.G. Burke, B. Herendeen, P.E. Schoen, J.M. Schnur, and P. Yager, Synthesis and Characterization of Positional Isomers of 1,2, bis heptacosadiynoyl phosphatidylcholines, in: “Surfactants in Solution,” K. L. Mittal, Ed., Elsevier: N.Y. (in press).Google Scholar
  16. 15.
    P. Yager, P.E. Schoen, C. Davies, R. Price, and A. Singh, Structure of Lipid Tubules Formed From a Polymerizable Lecithin, Biophys. J. 48:899–906 (1985).PubMedCrossRefGoogle Scholar
  17. 16.
    J.M. Schnur, J.H. Georger, R. Price, P. Yager, A. Singh, and P.E. Schoen, Direct Fabrication of Lipid Microstructures from Solvent/Non Solvent Solutions, Invention Disclosure US Patent Application #07/063029.Google Scholar
  18. 17.
    C. Rosenblatt, P. Yager, and P.E. Schoen, Orientation of Lipid Tubules by a Magnetic Field, Biophvs. J. 52:295–301 (1987).CrossRefGoogle Scholar
  19. 18.
    T.G. Burke, J.P. Sheridan, A. Singh, and P. Schoen, Thermotropic Phase Behavior of Vesicles Composed of a Polymerizable Lecithin: A Differential Scanning Calorimetric Study, Biophys. J. 49 (2,Pt. 2):321a (1986).Google Scholar
  20. 19.
    AS. Rudolph and T.G. Burke, A Fourier-Transform Infrared Spectroscopic Study of the Polymorphic Phase Behavior of l,2-bis(tricosa-10,12- dynoyl)-sn-glycero-3-phosphocholine; a Polymerizable Lipid Which Forms Novel Microstructures, Biochimica et Biophysica Acta 902:349–359 (1987).PubMedCrossRefGoogle Scholar
  21. 20.
    J.H. Georger, A. Singh, R. Price, J.M. Schnur, P. Yager, and P.E. Schoen, Helical and Tubular Microstructures Formed by Polymerizable Phosphatidylcholines, J. Am. Chem. Soc, 109:6169 (1987).CrossRefGoogle Scholar
  22. 21.
    T.G. Burke, A. Singh and P. Yager, The Encapsulation of Vesicles Within Lipid Tubules, Proc. NY Acad. Sci, in press (1988).Google Scholar
  23. 22.
    D.S. Johnston and D. Chapman, Polymerized Liposomes and Vesicles, in: “Liposome Technology: Vol 1”, Ed. G. Gregoriadas, CRC Press, N.Y. (1985).Google Scholar
  24. 23.
    P.E. Schoen and P. Yager, Spectroscopic Studies of Polymerized Surfactants: 1,2-bis(tricosa-10,12-dynoyl)-sn-gylcero-3-phosphocholine, J. Polym. Sci.: Polym. Phys. 23:2203–2216 (1985).Google Scholar
  25. 24.
    P.E. Schoen, P. Yager, J.P. Sheridan, R. Price, J.M. Schnur, A. Singh, D.G. Rhodes and S.L. Blechner, Order in Diacetylenic Microstructures, Mol. Crvst. Liq. Crvst. 153:357–366. (1987).Google Scholar
  26. 25.
    J.P. Sheridan, Conformational Order in a Diacetylenic Lipid, NRL Memorandum Report 5975 (1988).Google Scholar
  27. 26.
    I.W. Levin, in: “Advances in Infrared and Raman Spectroscopy: Vol II”, Eds. R.T. Clark and R.E. Hester, Wiley, NY (1984).Google Scholar
  28. 27.
    W.T. Ferrar, D.F. O’Brien, A. Warshawsky, and C.L. Voycheck, Metalization of Lipid Vesicles via Electroless Plating, J. Am. Chem. Soc. 110:288–289 (1988).CrossRefGoogle Scholar
  29. 28.
    CR. Shipley Jr., Historical Highlights of Electroless Plating, 71:92–99 (1984).Google Scholar
  30. 29.
    W. Curatolo and L.J. Neuringer, The Effects of Cerebrosides on Model Membrane Shape, J. Biol. Chem. 261:17177–17182 (1986).PubMedGoogle Scholar
  31. 30.
    D. Papahadjopoulos, WJ. Vail, K. Jacobson, and G. Post, Cochleate Lipid Cylinders. Formation by Fusion of Unilamellar Lipid Vesicles, Biochem. Biophys. Acta. 394:483 (1975).PubMedCrossRefGoogle Scholar
  32. 31.
    P.R. Cullis and B. DeKruiff, Lipid Polymorphism and the Functional Roles of Lipids in Biological Membranes, Biochem. Biophys. Acta. 559:399 (1979).Google Scholar
  33. 32.
    D.W. Deamer, R. Leonard, A. Tardieu, and D. Branton, Lamellar and Hexagonal Lipid Phases Visualized by Freeze-Etching, Biochim. Biophys. Acta. 219:47–60 (1970).PubMedCrossRefGoogle Scholar
  34. 33.
    R.M. Servuss, Helical Ribbons of Lecithin, Chem. Phys. Lipids. 46:37–41 (1988).CrossRefGoogle Scholar
  35. 34.
    P.G. de Gennes, Physique des Surfaces et des Interfaces. CR Acad. Sei. Paris 304:7 (1987).Google Scholar
  36. 35.
    W. Helfrich, Helical Bilayer Structures Due to Spontaneous Torsion of the Edges, J. Chem. Phys.. 85:1085 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alan S. Rudolph
    • 1
  • Jeffrey M. Calvert
    • 2
  • Paul E. Schoen
    • 1
  • Joel M. Schnur
    • 1
  1. 1.Bio/Molecular Engineering BranchNaval Research LaboratoryUSA
  2. 2.Geo-Centers, IncFort WashingtonUSA

Personalised recommendations