Advertisement

Photochemical Reactions of Dyes and Olefins in Monolayer Films and Supported Multilayers

  • David G. Whitten
  • Lynn Collins-Gold
  • Thomas J. Dannhauser
  • William F. Mooney
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

The main purpose of the conference, for which this paper is contributed, was to assess the technological possibilities for membrane-derived or mimetic structures such as bilayers, thin films and vesicles. In particular, the present manuscript will focus on Langmuir-Blodgett films generated at the air-water interface and supported multilayer assemblies formed therefrom. Most of the phenomena which will be discussed concerning reactivity in these assemblies are photophysical or photochemical in origin. From a chemist’s perspective the question of possible technological applications (and limitations) subdivides into several parts; since we are dealing with an “organized assembly” it is necessary first to understand this organization on a molecular level and how it may be controlled or manipulated. Technological applications must ultimately depend on unique features of structure or reactivity so it is necessary to develop, again on a molecular level, an understanding of structure and reactivity relationships in these assemblies and how these may be reflected in macroscopic properties. In the case of L.B. films and supported multilayer assemblies one is clearly dealing with a biomimetic system; a major question is thus whether such “mimetic” structures can offer advantages over natural systems. With respect to technological applications major questions which must be addressed concern ease of preparation and manipulation, the potential to go from laboratory scale to device and all of the sub-questions concerning molecular and macroscopic stability, reproducibility and special materials.

Keywords

Trans Isomer Reversed Micelle Monolayer Film Photosensitize Oxidation Multilayer Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. L. Gaines, “Insoluble Monolayers at Liquid-Gas Interfaces,” Wiley- Interscience, New York (1966).Google Scholar
  2. 2.
    H. Kuhn, D. Möbius, and H. Bücher, p. 588, in: “Physical Methods of Chemistry,” Vol I, Part 3B, A. Weissburger and B. Rossiter, eds., Wiley, New York (1972).Google Scholar
  3. 3.
    D. Möbius, p. 113, in: “Organic Transformations in Nonhomogeneous Media,” M. A. Fox, ed., ACS Symposium Series 278, Washington (1985).CrossRefGoogle Scholar
  4. 4.
    R. Subramanian and L. K. Patterson, J. Phys. Chem. 89:1202 (1985).CrossRefGoogle Scholar
  5. 5.
    L. Vaidyanathan, L. K. Patterson, D. Möbius, and H.-R. Gruniger, J. Phys. Chem. 89:491 (1985).CrossRefGoogle Scholar
  6. 6.
    D. G. Whitten, Angew. Chem. Int. Ed. Eng. 18:440 (1979).CrossRefGoogle Scholar
  7. 7.
    E. E. Polymeropoulos and D. Möbius, Ber. Bunsenges. Phys. Chem. 83: 1215 (1979).Google Scholar
  8. 8.
    D. G. Whitten, J. Amer. Chem. Soc. 96:594 (1974).CrossRefGoogle Scholar
  9. 9.
    L. Collins-Gold, D. Möbius, and D. G. Whitten, Langmuir 2:191 (1986).CrossRefGoogle Scholar
  10. 10.
    K. H. Grellmann and P. Hentzschel, Chem. Phys. Letters 53:545 (1978).CrossRefGoogle Scholar
  11. 11.
    A. D. Kirsch and G. M. Wyman, J. Phys. Chem. 81:413 (1977).CrossRefGoogle Scholar
  12. 12.
    H. Görner and D. Schulte-Frohlinde, Chem. Phys. Letters 66:383 (1979).CrossRefGoogle Scholar
  13. 13.
    A. D. Kirsch and G. M. Wyman, J. Phys. Chem. 79:543 (1975).CrossRefGoogle Scholar
  14. 14.
    von M. Erler, G. Haucke, and R. Paetzold, Z. Phys. Chem. 258:315 (1977).Google Scholar
  15. 15.
    T. Karstens, K. Kobs, and R. Memming, Ber. Bunsenges. Phys. Chem. 83: 504 (1979).Google Scholar
  16. 16.
    J. Saltiel and J. L. Charlton, p. 25, in: “Rearrangements in Ground and Excited States,” Vol 3, P. de Mayo, ed., Academic Press, New York (1980).Google Scholar
  17. 17.
    L. Collins-Gold, unpublished results.Google Scholar
  18. 18.
    D. G. Whitten and M. T. McCall, J. Am. Chem. Soc. 91:5681 (1969).CrossRefGoogle Scholar
  19. 19.
    J. A. Mercer-Smith and D. G. Whitten, J. Am. Chem. Soc. 100:2620 (1978).CrossRefGoogle Scholar
  20. 20.
    F. H. Quina and D. G. Whitten, J. Am. Chem. Soc. 99:877 (1977).CrossRefGoogle Scholar
  21. 21.
    S. L. Vadas and B. R. Suddaby, unpublished results.Google Scholar
  22. 22.
    W. F. Mooney, III, P. J. Eller-Brown, J. C. Russell, S. B. Costa, L. G. Pedersen, and D. G. Whitten, J. Amer. Chem. Soc. 106:5659 (1984).CrossRefGoogle Scholar
  23. 23.
    P. E. Brown and D. G. Whitten, J. Phys. Chem. 89:1217 (1985).CrossRefGoogle Scholar
  24. 24.
    W. F. Mooney and D. G. Whitten, J. Amer. Chem. Soc. 108:5712 (1986).CrossRefGoogle Scholar
  25. 25.
    H. Kuhn, H. Bücher, B. Mann, D. Möbius, L. V. Szentpaly, and P. Tillmann, Phot. Sci. Eng. 11:233 (1967).Google Scholar
  26. 26.
    J. R. Miller, L. T. Calcaterra, and G. L. Closs, J. Am. Chem. Soc. 106: 3047 (1984).CrossRefGoogle Scholar
  27. 27.
    J. R. Miller and R. K. Huddieston, J. Phys. Chem. 86:200 (1982).CrossRefGoogle Scholar
  28. 28.
    J. R. Miller and J. V. Beitz, J. Chem. Phys. 74:6746 (1981).CrossRefGoogle Scholar
  29. 29.
    R. H. Schmehl, G. Shaw, and D. G. Whitten, Chem. Phys. Lett. 58:549 (1978).CrossRefGoogle Scholar
  30. 30.
    D. G. Whitten, J. A. Mercer-Smith, R. H. Schmehl, and P. R. Worsham, Adv. Chem. Ser. 184:47 (1980).CrossRefGoogle Scholar
  31. 31.
    J. A. Mercer-Smith and D. G. Whitten, J. Am. Chem. Soc. 101:6620 (1979).CrossRefGoogle Scholar
  32. 32.
    K. Chandrasekaran, C. Giannotti, K. Monserrat, and D. G. Whitten, J.Am. Chem. Soc. 104:6200 (1982).CrossRefGoogle Scholar
  33. 33.
    J. M. Lamberts, D. R. Schumacher, and D. C. Neckers, J. Am. Chem. Soc. 106:5879 (1984).CrossRefGoogle Scholar
  34. 34.
    L. Collins-Gold, D. C. Barber, W. J. Hagan, S. L. Gibson, R. Hilf, and D. G. Whitten, Photochem. Photobio. (1988), in press.Google Scholar
  35. 35.
    D. Eastwood and M. Gouterman, J. Molecular Spec. 35:359 (1970).CrossRefGoogle Scholar
  36. 36.
    A. P. Schaap, A. L. Thayer, E. C. Blossey, and D. C. Neckers, J. Am. Chem. Soc. 97:3741 (1975).CrossRefGoogle Scholar
  37. 37.
    C. R. Lambert, E. Reddi, J. D. Spikes, M. A. J. Rodgers, and G. Jori, Photochem. Photobio. 44:595 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • David G. Whitten
    • 1
  • Lynn Collins-Gold
    • 1
  • Thomas J. Dannhauser
    • 1
  • William F. Mooney
    • 1
  1. 1.Department of ChemistryUniversity of RochesterRochesterUSA

Personalised recommendations