Immobilized Photosynthetic Membranes and Cells for the Production of Fuels and Chemicals

  • David O. Hall
  • K. Krishna Rao
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


Photosynthesis by plants, algae, cyanobacteria (bluegreen algae) and photosynthetic bacteria converts large quantities of solar radiation into chemical energy in the form of carbohydrates, lipids, proteins, ammonia, hydrogen, ATP, pyridine nucleotides, etc. The importance of photosynthetic processes as energy converters lies in the facts that the substrates used such as water, CO2 and N2 are ubiquitous and inexpensive.


Glutamine Synthetase Polyurethane Foam Glutamine Synthetase Activity Ammonia Production Hydrogenase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Affolter, D. and Hall, D.O., 1986, Long-term stability of photosynthetic electron transport in polyvinyl foam immobilized cyanobacteria, Photobiochem. Photobiophys., 12:193.Google Scholar
  2. Benemann, J.R., Berenson, J.A., Kaplan, N.O. and Kamen, M.D., 1973, Hydrogen evolution by a chloroplast-ferredoxinhydrogenase system, Proc. Nat. Acad. Sci. USA, 70:2317.Google Scholar
  3. Borowitzka, M.A. and Borowitzka, L.J. eds., 1988, “Microalgal biotechnology”, Cambridge University Press, Cambridge.Google Scholar
  4. Boussiba, S. and Gibson, J., 1985, The role of glutamine synthetase activity in ammonium and methyl ammonium transport in Anacystis nidulans R-2, FEBS Lett., 180:13.CrossRefGoogle Scholar
  5. Brodelius, P. and Mosbach, K., eds., 1987, “Immobilized enzymes and cells”, Methods in Enzymology, vol. 135, Academic Press, New York.Google Scholar
  6. Brouers, M. and Hall, D.O., 1986, Ammonia and hydrogen production by immobilized cyanobacteria, J.Biotechnol., 3:307.CrossRefGoogle Scholar
  7. Brouers, M., de Jong, H., Shi, D.J. and Hall, D.O., 1988. Immobilized cells: An appraisal of the methods and applications o# cell immobilization techniques, in: “Algal Biotechnology”, R.C. Cresswell, T.A.V. Rees and N. Shah, eds. Longman, London (In press).Google Scholar
  8. Cammack, R., Hall, D.U. and Rao, K.K., 1985, Hydrogenases: structure and applications in hydrogen production, in: “Microbial gas metaboism: mechanistic, metabolic and biotechnological aspects”, R.K. Poole and C. Dow, eds., Academic Press, London.Google Scholar
  9. Costerton, J.W., 1985, The role of bacterial exopolysaccharides in nature and disease, Developments in Industrial Microbiology, 26:249.Google Scholar
  10. Gest, H., 1980, The evolution of biological energy transducing systems, FEMS Microbiol.Lett., 7:73.CrossRefGoogle Scholar
  11. Gisby, P.E., Rao, K.K. and Hall, D.O., 1987, Entrapment techniques for chloroplasts, cyanobacteria and hydrogenases, Methods in Enzymology. 135:440.CrossRefGoogle Scholar
  12. Gordon, J.K. and Brill, W.J., 1974, Derepression of nitrogenase synthesis in the presence of excess of NH4+, Biochem. Biophys. Res. Commun., 59:967.Google Scholar
  13. Gratzel, M., ed., 1983, “Energy Resources through Photochemistry and Catalysis”, Academic Press New York.Google Scholar
  14. Hall, D.O., Affolter, D.A., Brouers, M., Shi, D.J., Yang, L.W. and Rao, K.K., 1985, Photobiological production of fuels and chemicals by immobilized algae, in: “Plant Products and New Technology”, K.W. Fuller and J.R. Gallon, eds., Oxford University Press.Google Scholar
  15. Hall, D.O., Brouers, M., de Jong, H., De la Rosa, M.A., Rao, K.K., Sh, D-J. and Yang, L.W., 1987, Immobilized photosynthetic systems for the production of fuels and chemicals, Photobiochem. Photobiophys. Suppl., 167.Google Scholar
  16. Haselkorn, R., 1978, Heterocysts, Ann. Rev. Plant Physiol., 29:319.Google Scholar
  17. Haselkorn, R., 1986, Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria, Ann. Rev. Microbiol., 40:525.Google Scholar
  18. Hoffmann, D., Thauer, R. and Trebst, A., 1977. Photosynthetic hydrogen evolution by spinach chloroplasts coupled to a Clostridium hydrogenase, Z.Naturforsch., 32C:257.Google Scholar
  19. Houchins, J.P., 1984, The physiology and biochemistry of hydrogen metabolism in cyanobacteria, Biochim. Biophys. Acta. 768:227.Google Scholar
  20. Howarth, D.C. and Codd, G.A., 1985, The uptake and production of molecular hydrogen by unicellular cyanobacteria, J. Gen. Microbiol., 131:1561.Google Scholar
  21. Jensen, B.B., Cox, R.P. and Burris, R.H., 1986, Isolation of cyanobacterial heterocysts with high and sustained dinitrogen-fixation capacity supported by endogenous reductants, Arch. Microbiol., 145:241.Google Scholar
  22. Kerby, N.W., Musgrave, S.C., Rowell, P., Shestakov, S.V. and Stewart, W.D.P., 1986, Photoproduction of ammonium by immobilized mutant strains of Anabaena variabilis. Appl. Microbiol. Biotechnol., 24:42.Google Scholar
  23. Lambert, G.R. and Smith, G.D., 1981, The hydrogen metabolism of cyanobacteria, Biol. Rev., 56:589.Google Scholar
  24. Latorre, C., Lee, J.H., Spiller, H. and Shanmugam, K.T., 1986, Ammonium ion-excreting cyanobacterial mutant as a source of nitrogen for the growth of rice: a feasibility study, Biotech. Lett., 8:507.Google Scholar
  25. Meekes, J.C., Steinberg, N., Joseph, C.M., Enderlin, C.S., Jorgensen, P.A. and Peters, G.A., 1985, Assimilation of exogenous dinitrogen-derived 13NH4 by Anabaena azollae separated from Azolla caroliniana wild, Arch. Microbiol., 142:229.Google Scholar
  26. Muallem, A., Bruce, D. and Hall, D.O., 1983, Photoproduction of hydrogen and NADPH2 by blue-green algae immobilized in polyurethane foam, Biotech. Lett., 5:365.Google Scholar
  27. Musgrave,S.C.,Kerby,N.W.,Codd,G.A.andStewart,W.D.P., 1982, Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacterium Anabaena 27893, Biotech. Lett., 4:647.CrossRefGoogle Scholar
  28. Nierzwicki-Bauer, S.A., Balkwill, D.L. and Stevens, S.E., 1984, Morphology and ultrastructure of the cyanobacterium Mastigocladus laminosus growing under nitrogen-fixing conditions, Arch. Microbiol., 137:97.Google Scholar
  29. Ochiai, H., Shibata, H., Sawa, Y. and Katoh, T., 1980, “Living electrode” as a long-lived photoconverter for biophotolysis of water, Proc. Natl. Acad. Sci. USA, 77:2442.Google Scholar
  30. Packer, L., 1980, H2 production by an in vitro chloroplast, ferredoxin, hydrogenase reconstituted system, Methods in Enzymology, 69:625.CrossRefGoogle Scholar
  31. Papageorgiou, G.C. and Lagoyanni, T., 1986, Immobilization of photosynthetically active cyanobacteria in glutaraldehyde-crosslinked albumin matrix, Appl. Microbiol. Biotechnol., 23:417.Google Scholar
  32. Peters, G.A., Ray, T.B., Mayne, B.C. and Toia, R.E., 1980, Azolla-Anabaena association: morphological and physiological studies, in: “Nitrogen Fixation” Vol.II, W.E. Newton and W.H. Orme Johnson, eds., University Park Press, Baltimore, MD.Google Scholar
  33. Ramos, J.L., Guerrero, M.G. and Losada, M., 1982, Sustained photoproduction of ammonia from nitrate by Anacystis nidulans. Appl. Environ. Microbiol., 44:1020.Google Scholar
  34. Rao, K.K. and Hall, D.O., 1979, Hydrogen production from isolated chloroplasts, in “Topics in Photosynthesis”, vol.3, J.Barber, ed., Elsevier Scientific, Amsterdam.Google Scholar
  35. Rao, K.K., Cammack, R. and Hall, D.O., 1985, Evolution of light energy conversion, in: “Evolution of Prokaryotes”, K.H. Schleifer and E. Stackebrant, eds., Academic Press, London.Google Scholar
  36. Rao, K.K. and Hall, D.O., 1988, Hydrogenases: Isolation and assay, in “Methods in Enzymology. Cyanobacteria”. L. Packer and A.N. Glazer, eds., Academic Press, New York, in press.Google Scholar
  37. Robins, R.J., Hall, D.O., Shi, D-J., Turner, R.J. and Rhodes, M.J.C., 1986, Mucilage acts to adhere cyanobacteria and cultured plant cells to biological and inert surfaces, FEMS Microbiol. Lett., 34:155.CrossRefGoogle Scholar
  38. Serra, J.L., Ochoa de Alda, J.A.O. and Llama, M.J., 1988, Isolation and some properties of photosynthetic membrane vesicles enriched in Photosystem I from Phormidium laminosum by a non-detergent method, in: “Photocatalytic Production of Energy-rich compounds”, D.O. Hall and G. Grassi, eds, Elsevier Applied Science, London, in press.Google Scholar
  39. Shi, D-J., Brouers, M., Hall, D.O. and Robins, R.J., 1987, The effects of immobilization on the biochemical, physiological and morphological features of Anabaena azollae. Planta. 172: 298.CrossRefGoogle Scholar
  40. Smith, G.D., Muallem, A. and Hall, D.O., 1982, Hydrogenase catalyzed photoproduction of hydrogen by photosystem I of Mastiuocladus laminosus and Phormidium laminosum, Photobiochem. Photobiophvs., 4:307.Google Scholar
  41. Solorzano, L., 1969, Determination of ammonia in natural waters by the phenol-hypochlorite method, Limnol. Oceanogr., 14:799.Google Scholar
  42. Stewart, W.D.P., 1980, Some aspects of structure and function in N2-fixing cyanobacteria, Ann. Rev. Microbiol., 34:497.Google Scholar
  43. Stewart, W.D.P., Codd, G.A. and Rai, A.N., 1983, H2 production from sunlight, air and water by N2-fixing systems involving cyanobacteria, in “Photochemical, Photoelectrochemical and Photobiological Processes”, D.O. Hall, W. Palz and D. Pirrwitzi, eds., D. Reidel Publ. Co., Dordrecht.Google Scholar
  44. Subramanian, G. and Shanmugasundaram, S., 1986, Uninduced ammonia release by the nitrogen fixing cyanobacterium Anabaena, FEMS Microbiol. Lett., 37:151.Google Scholar
  45. Vincenzini, M., Brouers, M., Hall, D.O. and Materassi, R., 1986, Ammonia photoproduction by immobilized Cyanospir arippkae. Photobiochem. Photobiophys., 13:85.Google Scholar
  46. Vrachnou, E., Vlachopoulos, N. and Gratzel, M., 1988, Efficient visible light sensitization of TiO2 by surface complexation with transition metal cyanides, in “Photocatalytic Production of Energy-rich compounds”, D.O. Hall and G. Grassi, eds., Elsevier Applied Science, London, in press.Google Scholar
  47. Webb, C., Black, G.M. and Atkinson, B., eds., 1986, “Process engineering aspects of immobilised cell systems”, Pergamon Press, Oxford.Google Scholar
  48. Wolk, P.C., 1975, Differentiation and pattern formation in filamentous blue-green algae, in: “Spore VI”, P. Gerhardt, H. Sadoff and R. Costilow, eds., Am. Soc. Microbiol., Washington, D.GGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • David O. Hall
    • 1
  • K. Krishna Rao
    • 1
  1. 1.Department of BiologyKing’s College LondonLondonUK

Personalised recommendations