Advertisement

Some Structural and Functional Properties of Hemoglobin-Containing Liposomes (Hemosomes), A Potential Red Blood Cell Substitute

  • J. Szebeni
  • E. E. Di Iorio
  • H. Hauser
  • K. H. Winterhalter
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

There is a growing interest in the encapsulation of hemoglobin (Hb) in liposomes for two reasons: (i) the resulting hemosomes have a potential use as a non-toxic, non-immunogenic red blood cell (RBC) surrogate (1–5), and (ii) they provide a useful RBC model for studying the interaction of Hb with lipid bilayers (6,7). We prepared hemosomes by dispersing various (phospho)lipids in concentrated human RBC lysate, and report here on (i) some morphological characteristics of the resulting particles; (ii) the effect of lipid composition on the amount of entrapped Hb; (iii) the kinetics of CO-binding by entrapped Hb; and (iv) the stability of the lipid membrane and of Hb in hemosomes. To shed light on the molecular mechanism of Hb-liposome interactions, the changes in the intrinsic fluorescence of Hb upon addition to small unilamellar vesicles (SUV) were also analyzed.

Keywords

Lipid Bilayer Lipid Composition Intrinsic Fluorescence Sodium Cholate Small Unilamellar Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

DPPA

dipalmitoylphosphatidic acid

DPPC

dipalmitoylphosphatidylcholine

EPA

egg phosphatidic acid

EPC

egg phosphatidylcholine

Hb

hemoglobin

PS

bovine brain phosphatidylcholine

RBC

red blood cell

SUV

small unilamellar vesicles

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Djordjevich and I.F. Miller, Synthetic erythrocytes from lipid encapsulated hemoglobin, Exp. Hemat. 8:584 (1980).PubMedGoogle Scholar
  2. 2.
    B.P. Gaber, P. Yager, J.P. Sheridan, and E.L. Chang, Encapsulation of hemoglobin in phospholipid vesicles, FEBS Lett., 153:285 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    C.A. Hunt, R.R. Burnette, R.D. MacGregor, A.E. Strubbe, D.T. Lau, N. Taylor, and H. Kawada, Synthesis and evaluation of a prototypal artificial red cell, Science, 230:1165 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    R.L. Beissinger, M.C. Farmer, and J.L. Gossage, Liposome encapsulated hemoglobin as a red cell surrogate, Trans. Am. Soc. Artif. Intern. Organs. 32:58 (1986).Google Scholar
  5. 5.
    E. Dellacherie, P. Labrude, C. Vigneron, and J.G. Riess, Synthetic carriers of oxygen, in CRC Reviews in Therapeutic Drug Carrier Systems. Vol 3, No 1, pp 41–94, CRC Press (1987).Google Scholar
  6. 6.
    J. Szebeni, C.C. Winterbourn, and R.W. Carrell, Oxidative interaction between hemoglobin and phospholipid bilayers. A liposomal model, Biochem. J., 220:685 (1984).Google Scholar
  7. 7.
    J. Szebeni and K. Toth, Lipid peroxidation in hemoglobin-containing liposomes. Effects of membrane phospholipid composition and cholesterol content, Biochim. Biophys. Acta, 857:139 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Szebeni, E.E. Di Iorio, H. Hauser, and K.H. Winterhalter, Encapsulation of hemoglobin in phospholipid liposomes: characterization and stability, Biochemistry, 24:2827 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    T.H.J. Huisman and A.M. Dozy, Studies on the heterogeneity of hemoglobin IX. The use of tris(hydroxymethyl) aminomethane-HCl buffers in the anion-exchange chromatography of hemoglobins, J. Chromatography, 19:160 (1965).CrossRefGoogle Scholar
  10. 10.
    E.E. Di Iorio, Preparation of derivatives of ferrous and ferric hemoglobin, Methods in Enzymol., 76:57 (1981).CrossRefGoogle Scholar
  11. 11.
    A.D. Bangham, M.M. Standish, and J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. Biol., 13:238 (1965).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Oertle, K.H. Winterhalter, and E.E. Di Iorio, Kinetic properties of cobaltiron hybrid hemoglobins, FEBS Lett., 153:213 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Hauser, Some aspects of the phase behaviour of charged lipids, Biochim. Biophys. Acta, 772:37 (1984).CrossRefGoogle Scholar
  14. 14.
    J.T. Coin and J.S. Olson, The rate of oxygen uptake by human red blood cells, J. Biol. Chem., 254:1178 (1979).PubMedGoogle Scholar
  15. 15.
    M. Brunori, G.M. Giacometti, E. Antonini, and J. Wyman, Denaturation of aplysia myoglobin. Equilibrium study, J. Mol. Biol., 63:129 (1972).CrossRefGoogle Scholar
  16. 16.
    E.A. Burstein, N.S. Vedenkina, and M.N. Ivkova, Fluorescence and the location of tryptophan residues in proteins, Photochem. Photobiol., 18:263 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Grossmann, I.S. Hammerman, and T. Schaap, Fluorescence changes resulting from methemoglobin and fatty acid interaction, J. Food Sci., 44:685 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. Szebeni
    • 1
    • 2
  • E. E. Di Iorio
    • 1
  • H. Hauser
    • 1
  • K. H. Winterhalter
    • 1
  1. 1.Laboratorium fur Biochemie, Eidgenossische Technische HochschuleETH-ZentrumZurichSwitzerland
  2. 2.Department of PhysiologyNational Institute of Food Hygiene and NutritionBudapestHungary

Personalised recommendations