The Interaction of an Anti-Phosphorylcholine Monoclonal Antibody with Phosphorylcholine-Containing Lipids

  • María-Angeles Urbaneja
  • Dennis Chapman
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


Of the several types of antibodies described in autoimmune disorders, the anti-phospholipid antibodies have received relatively little attention. These antibodies occur frequently in the sera of patients with a variety of autoimmune diseases, including systemic lupus erythematosus and related connective tissue disorders1. It has been found that antibodies against lipids such as phosphatidylcholine, sphingomyelin, and possibly cholesterol are ubiquitous in normal human sera2. One possible mechanism for the induction and/or pathogenesis of these antibodies involves alterations in the phospholipid architecture of the cell membrane. Such an explanation would seem plausible in the light of the variety of lipid structures that could exist, at least trasiently, in membranes, in addition to the bilayer phase3. In fact, in certain pathological conditions, non-bilayer lipid structures have been demonstrated in vivo4. Although such structures could play a role in antibody induction, this possibility requires a demonstration that anti-lipid antibodies exist which are able to distinguish different polymorphic forms of the same lipid.


Systemic Lupus Erythematosus Phospholipid Vesicle Fluorescence Depolarization Depolarization Measurement Tryptophan Fluorescence Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schleider, M. A., Nachman, R. L., Jaffe, E. A. and Coleman, M. (1976) Blood, 48: 499PubMedGoogle Scholar
  2. 2.
    Richards, R. L. and Alving, C. R. (1982) in Cell Symposium. Glycolipids. American Chemical Society Symposium 128 (Sweely, C. C., Ed.) p 461, American Chemical Society, Washington, D. C.Google Scholar
  3. 3.
    Cullis, P. R. and de Kruijff, B. (1979) Biochim. Biophys. Acta, 559: 399PubMedGoogle Scholar
  4. 4.
    Buchheim, W., Drenckhahn, D. and Lüllmann-Rauch, R. (1979) Biochim. Biophys. Acta, 575: 71PubMedGoogle Scholar
  5. 5.
    Cosenza, H. (1976) Eur. J. Immunol., 6: 114PubMedCrossRefGoogle Scholar
  6. 6.
    Potter, M. and Liebermann, R. (1970) J. Exp. Med., 132: 737PubMedCrossRefGoogle Scholar
  7. 7.
    Leon, M. A. and Young, N.M. (1971) Biochemistry, 10: 1424PubMedCrossRefGoogle Scholar
  8. 8.
    Claflin, J. L., Liebermann, R. and Davie, J. M. (1974) J. Exp. Med., 139: 58PubMedCrossRefGoogle Scholar
  9. 9.
    Niedieck, B., Kuck, U. and Gardemin, H. (1978) Immunochemistry, 15: 471PubMedCrossRefGoogle Scholar
  10. 10.
    Alonso, A., Villena, A. and Goñi, F. M. (1981) FEBS Lett., 123: 200PubMedCrossRefGoogle Scholar
  11. 11.
    Urbaneja, M. A. and Chapman, D. SubmittedGoogle Scholar
  12. 12.
    Restall, C., Coke, M., Phillips, E. and Chapman, D. (1986) Biochim. Biophys. Acta, 874: 255CrossRefGoogle Scholar
  13. 13.
    Levine, Y. K. (1972) Prog. Biophys. Mol. Biol., 24: 1PubMedCrossRefGoogle Scholar
  14. 14.
    Overath, P. and Trauble, H. (1973) Biochemistry, 12: 2625PubMedCrossRefGoogle Scholar
  15. 15.
    Trauble, H. and Overath, P. (1973) Biochim. Biophys. Acta, 307: 491PubMedCrossRefGoogle Scholar
  16. 16.
    Lentz, B. R., Barenholz, Y. and Thompson, T. E. (1976) Biochemistry, 15: 4521PubMedCrossRefGoogle Scholar
  17. 17.
    Eftink, M. R. and Chiron, C. A. (1976) Biochemistry, 15: 672PubMedCrossRefGoogle Scholar
  18. 18.
    Brand, J. G. and Cagen, R. H. (1977) Biochim. Biophys. Acta, 493: 178PubMedGoogle Scholar
  19. 19.
    Barisas, B. G., Sturtevant, J. M. and Singer, S.J. (1971) Biochemistry, 10: 2816PubMedCrossRefGoogle Scholar
  20. 20.
    Mukkur, T. S. (1980) Trends Biochem. Sci., March, 72Google Scholar
  21. 21.
    Alonso, A., Sáez, R., Villena, A. and Goñi, F. M. (1982) J. Membrane Biol., 67: 55–62CrossRefGoogle Scholar
  22. 22.
    Rauch, J., Tannenbaum, M., Tannenbaum, H., Ramelson, H., Cullis, P. R., Tilcock, C. P. S., Hope, M. J. and Janoff, A. S. (1986) J. Biol. Chem., 261: 9672PubMedGoogle Scholar
  23. 23.
    Janoff, A. S. and Rauch, J. (1986) Chem. Phys. Lipids, 40: 315PubMedCrossRefGoogle Scholar
  24. 24.
    Urbaneja, M. A., Fidelio, G. D., Lucy, J. A. and Chapman, D. (1987) Biochim. Biophys. Acta, 898: 253PubMedCrossRefGoogle Scholar
  25. 25.
    Gulik-Krzwicki, F., Schechter, E., Iwatsubo, M., Ranck, J. L. and Luzzati, V. (1970) Biochim. Biophys. Acta, 219: 1CrossRefGoogle Scholar
  26. 26.
    Lesslauer, W., Cain, J. and Blasie, J. K. (1971) Biochim. Biophys. Acta, 241: 547PubMedCrossRefGoogle Scholar
  27. 27.
    Zingsheim, H. and Haydon, D. A. (1973) Biochim. Biophys. Acta, 898: 755Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • María-Angeles Urbaneja
    • 1
  • Dennis Chapman
    • 2
  1. 1.Departamento de Bioquímica. Facultad de CienciasUniversidad del País VascoSpain
  2. 2.Department of Biochemistry and ChemistryRoyal Free Hospital School of MedicineLondonUK

Personalised recommendations